

**TO:** John Schofield and Craig Haas, U.S. EPA

FROM: ERG

**DATE:** 3 November 2015

**SUBJECT:** Analytical Results – Phillips 66 Long Beach Refineries

#### 1. INTRODUCTION

This memorandum summarizes the analytical results for samples collected on August 27 and 28, 2015 during a sampling trip to two Phillips 66 petroleum refineries in Long Beach, California. All native samples were analyzed for the following:

- Toxicity Characteristic Leaching Procedure (TCLP) and total metals to include the target analyte list (TAL) metals;
- TCLP and total semivolatile organic compounds (SVOCs);
- TCLP and total volatile organic compounds (VOCs);
- Total petroleum hydrocarbons, including diesel range organics, oil range organics, and gas range organics;
- pH; and
- Flash Point.

Table 1 identifies the sample locations and types of analyses. Please note that all tables are located at the end of this memorandum. Attachment A contains photographs of the sampling points.

Eight of the waste samples collected at the facility were solid samples and seven were liquid samples. ERG collected the following blanks:

- SP-6 Field Blank at Wilmington;
- SP-14- Field Blank at Carson; and
- SP-15 Equipment Blank

ERG collected field duplicates to verify the reproducibility of the laboratory's results. ERG compared the results for the field duplicates to the native sample and identified the following analytes with a relative percent difference (RPD) of greater than 25 percent in the liquid samples (RPD in parenthesis):

#### Page 2

- Total aluminum (33.3 percent);
- Total copper (95.7 percent);
- Total iron (57.10 percent);
- Total lead (66.7 percent);
- Total magnesium (37.0 percent);
- Total manganese (138.8 percent); and
- TCLP mercury (184 percent);

None of the analytes in the solid sample duplicate exceeded RPD criteria. Therefore, the above exceedances are likely due to the heterogeneity of the sample used for liquid duplicate analysis (the Carson pond water outfall).

ERG collected field blanks at two different locations and one equipment blank to verify that environmental conditions, sampling procedures or sampling equipment did not contaminate the samples. As shown in Tables 9 and 15, only diesel range organics, oil range organics, manganese, and zinc were detected above reporting limits. In general, these analytes were detected at low levels relative to the native samples and were not flagged as analytes of interest due to screening level exceedances in the native samples.

Attachment B contains additional discussion on the laboratory's quality assurance and quality control analyses. Information on the exchange of samples and laboratory analysis by Pace Analytical is provided in the chain-of-custody forms in Attachment C at the end of this memorandum.

Based on the results of ERG's quality control analysis, and the information in Attachment B, ERG determined that the sampling data described in this sample summary are acceptable for use.

#### 2. TCLP RESULTS

The laboratory prepared TCLP leachates using the complete TCLP Extraction Procedure (EPA Method 1311). Analytes are only discussed in this section if analytical results showed an exceedance of either the limits in the toxicity characteristic (TCLP limits) or the universal treatment standards.

#### 2.1 TCLP Metal Results

Table 2 presents the results of the TCLP metal analyses for solids and provides the TCLP limits and nonwastewater universal treatment standards (NUTS) for comparison. Table 3 presents the results of the TCLP metal analyses for liquids and provides the TCLP limits for comparison.

The Tank 42 Solids sample (SP-7) and the sediment under the pond outfall sample (SP-13) exceeded the NUTS for zinc (8.7 and 7.3 mg/L, respectively, compared to a NUTS of 4.3 mg/L).

The Carson Selenium Plant liquid sample (SP-8), exceeded the TCLP limit for selenium (2.6 mg/L compared to a TCLP limit of 1.0 mg/L).

## 2.1 TCLP Semivolatile Organic Compounds Results

Table 4 summarizes the TCLP semivolatile organic compounds (SVOCs) results for solid samples and present the TCLP limit for comparison. Table 5 summarizes the TCLP SVOCs results for liquid samples and present the TCLP limits for comparison.

None of the samples collected exceeded TCLP limits for SVOCs.

#### 2.1 TCLP Volatile Organic Compounds Results

Table 6 summarizes the TCLP volatile organic compounds (VOCs) results for solid samples and provides TCLP limits for comparison. Table 7 summarizes the TCLP VOCs results for liquid samples and provides TCLP limits for comparison.

None of the samples collected exceeded TCLP limits for VOCs.

#### 3. TOTAL POLLUTANT RESULTS

## 3.1 <u>Total Metals Results</u>

Table 8 summarizes the total metals results for solid samples and provides EPA soil screening levels (SSL) for comparison. The following solid samples exceeded the SSL for arsenic (3 mg/kg):

- Tank 68 Grit (SP-1) (17.0 mg/kg);
- Sediment sample from Northwest Corner of Pond SBU-2 (SP-4) (7.6 mg/kg); and
- Tank 42 Solids (SP-7)(47.0 mg/kg).

The following solid samples exceeded the SSL for chromium<sup>1</sup> (6.3 mg/kg):

- Tank 68 Grit (SP-1) (37.6 mg/kg);
- Wilmington Selenium Plant solids (SP-3) (7.6 mg/kg);
- Sediment sample from Northwest Corner of Pond SBU-2 (SP-4) (31.7 mg/kg); and
- Sediment sample from Souhwest Corner of Pond SBU-2 (SP-5) (12.6 mg/kg)
- Tank 42 Solids (SP-7)(47.0 mg/kg); and
- Sediment from under pond outfall (SP-13) (26 mg/kg).

The Tank 42 Solids sample (SP-7) equaled the SSL for cobalt (35.0 compared to an SSL of 35 mg/kg).

The Tank 42 Solids sample (SP-7) equaled the SSL for iron (143,000 compared to an SSL of 35.7 mg/kg).

<sup>&</sup>lt;sup>1</sup> Conservative comparison was conducted between sampling data and SSL for hexavalent chromium.

Page 4

Table 9 summarizes the total metals results for solid samples and provides wastewater universal treatment standards (WUTS) for comparison.

The Wilmington Selenium Plant liquid sample exceeded the WUTS for zinc (114 mg/L compared to a WUTS of 2.61 mg/L.

#### 3.2 <u>Total Semivolatile Organic Compounds Results</u>

Table 10 summarizes the total SVOCs results for solids samples and provides SSLs and NUTS for comparison. Table 11 summarizes the total SVOCs results for liquid samples and provides WUTS for comparison.

No samples exceeded screening levels for total SVOCs.

#### 3.3 Total Volatile Organic Compounds Results

Table 12 summarizes the total VOCs results for solids samples and presents SSLs and NUTS for comparison. Table 13 summarizes the total VOCs results for liquid samples and presents WUTS for comparison.

No samples exceeded screening levels for total VOCs.

#### 3.4 TPH Results

Table 14 summarizes total petroleum hydrocarbon results for solid samples and Table 15 summarizes TPH results for liquid samples.

The sediment from under the pond outfall (SP-13) exhibited a diesel range organics (DRO) concentration of 723 mg/kg, and an oil range organics (ORO) concentration of 1,270 mg/kg.

These analytes were also detected, albeit at much lower levels, in the equipment blank (SP-15) (0.43 mg/l DRO and 0.84 mg/kg ORO).

#### 4. PH RESULTS

Table 16 summarizes the pH results for liquid samples.

None of the samples exceeded the threshold characteristic for corrosivity (compared to the threshold for corrosivity of 2<pH<12.5 S.U).

#### 5. FLASH POINT RESULTS

Table 17 summarizes the flash point results for the Carson pond water samples.

Neither sample exceeded the threshold characteristic for ignitability (compared to the threshold for ignitability of  $<60^{\circ}F$ ).

**Table 1. Sample Identification** 

| G 1          |                                                                              | Table 1. Sample 1de                                                                                                                              |                  |        |                                                                                                                           |
|--------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|---------------------------------------------------------------------------------------------------------------------------|
| Sample<br>ID | Sampling Point Location                                                      | Sample Description                                                                                                                               | Date             | Media  | Analysis                                                                                                                  |
|              |                                                                              | Wilmington Refin                                                                                                                                 |                  | 1      |                                                                                                                           |
| SP-1         | Tank 68 Grit<br>N 33.76959<br>W 118.28282                                    | Grit sample collected from roll-<br>off container in 90-day storage<br>area.                                                                     | 8/27/2015, 09:48 | Solid  | <ul><li>Metals (TCLP &amp; Total)</li><li>Semivolatiles (TCLP &amp; Total)</li><li>Volatiles (TCLP &amp; Total)</li></ul> |
| SP-2         | Selenium Plant Liquid<br>N 33.77541<br>W 118.28604                           | Gray liquid collected beneath roll-off bin in selenium plant.  Field pH: 3.79 Standard Units Temperature: 30.4 °Celsius                          | 8/27/2015, 11:23 | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     pH                                |
| SP-3         | Selenium Plant Solids<br>N 33.77541<br>W 118.28604                           | Homogenous sludge taken from roll-off container in selenium plant.                                                                               | 8/27/2015, 11:23 | Solid  | <ul><li>Metals (TCLP &amp; Total)</li><li>Semivolatiles (TCLP &amp; Total)</li><li>Volatiles (TCLP &amp; Total)</li></ul> |
| SP-4         | Sediment from Northwest<br>Corner of SBU-2 Pond<br>N 33.77557<br>W 118.28358 | Dry limestone gravel like material.                                                                                                              | 8/27/2015 14:51  | Solid  | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
| SP-5         | Sediment from Southwest<br>Corner of SBU-2 Pond<br>N 33.77480<br>W 113.28339 | Dry limestone gravel like material.                                                                                                              | 8/27/2015 15:10  | Solid  | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
| SP-6         | Field Blank - Near SBU-2 Pond                                                | Distilled water.                                                                                                                                 | 8/27/2015 15:31  | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
|              |                                                                              | Carson Refinery                                                                                                                                  | /                |        |                                                                                                                           |
| SP-7         | Tank 42 Solids from Drums<br>N 33.80624<br>W 113.24219                       | Black, moist, homogenous solids with approximately 20 to 30 percent moisture.                                                                    | 8/27/2015 17:59  | Solid  | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     pH                                |
| SP-8         | Selenium Plant Liquid                                                        | Collected from ground inside<br>curb. Water with light sheen and<br>black solids.<br>Field pH: 2.52 Standard Units<br>Temperature: 31.1 °Celsius | 8/27/2015 15:16  | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
| SP-9         | Petroleum coke                                                               | Collected from shaker inside of coke processing building. Black and granular material.                                                           | 8/27/2015 18:55  | Solid  | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
| SP-10        | Duplicate of SP-9                                                            |                                                                                                                                                  |                  |        |                                                                                                                           |
| SP-11        | Pond Water Outfall<br>N 33.80434<br>W 118.24201                              | Clear liquid. Field pH: 9. 09 Standard Units Temperature > 50 °Celsius                                                                           | 8/28/2015 9:13   | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     TPH     pH, Flash Point           |
| SP-12        | Pond Water Outfall Duplicate<br>N 33.80434<br>W 118.24201                    | Clear liquid.                                                                                                                                    | 8/28/2015 10:48  | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     TPH     pH, Flash Point           |
| SP-13        | Sediment Under Pond Outfall<br>N 33.80434<br>W 118.24201                     | Thin layer of black oily material with brownish fine sand underneath.                                                                            | 8/28/2015 10:20  | Solid  | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)                                       |
| SP-14        | Field Blank - Near SP- 12 & 13                                               | Distilled water.                                                                                                                                 | 8/28/2015 10:46  | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     TPH                               |
| SP-15        | Equipment Blank                                                              | Distilled water.                                                                                                                                 | 8/28/2015 13:30  | Liquid | Metals (TCLP & Total)     Semivolatiles (TCLP & Total)     Volatiles (TCLP & Total)     TPH                               |

**Table 2. Summary of TCLP Metal Results – Solid Samples** 

|                       |         |        |           | Samp      | le ID      |       |       |            | D                            | TOLD                       |                   |       |           |
|-----------------------|---------|--------|-----------|-----------|------------|-------|-------|------------|------------------------------|----------------------------|-------------------|-------|-----------|
| Analyte               | SP-1    | SP-3   | SP-4      | SP-5      | SP-7       | SP-9  | SP-10 | SP-13      | Reporting Limit <sup>a</sup> | TCLP<br>Limit <sup>b</sup> | NUTS <sup>c</sup> | Units | Method    |
| Aluminum              | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 2.0                          | n/a                        | n/a               | mg/L  | 1311/6010 |
| Antimony              | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 2.0                          | n/a                        | 1.15              | mg/L  | 1311/6010 |
| Arsenic               | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | 5.0                        | 5.0               | mg/L  | 1311/6010 |
| Barium                | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 2.0                          | 100.0                      | 21                | mg/L  | 1311/6010 |
| Beryllium             | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | n/a                        | 1.22              | mg/L  | 1311/6010 |
| Cadmium               | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.10                         | 1.0                        | 0.11              | mg/L  | 1311/6010 |
| Calcium <sup>d</sup>  | 17.7 B  | 5.7    | 849       | 476       | 61.2       | 2.0 B | ND    | 175        | 2.0                          | n/a                        | n/a               | mg/L  | 1311/6010 |
| Chromium              | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | 5.0                        | 0.6               | mg/L  | 1311/6010 |
| Cobalt                | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | n/a                        | n/a               | mg/L  | 1311/6010 |
| Copper                | 1.2     | ND     | ND        | ND        | ND         | ND    | ND    | 0.51       | 0.20                         | n/a                        | n/a               | mg/L  | 1311/6010 |
| Iron                  | 7.2     | 3.3    | 1.3       | ND        | 167        | ND    | ND    | ND         | 1.0                          | n/a                        | n/a               | mg/L  | 1311/6010 |
| Lead                  | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | 5.0                        | 0.75              | mg/L  | 1311/6010 |
| Magnesium             | ND      | ND     | 56.5      | 28.7      | 3.2        | ND    | ND    | 13.3       | 2.0                          | n/a                        | n/a               | mg/L  | 1311/6010 |
| Manganese             | 0.31    | ND     | 3.8       | 2.4       | 2.3        | ND    | ND    | 1.0        | 0.13                         | n/a                        | n/a               | mg/L  | 1311/6010 |
| Mercury               | 0.00025 | 0.0063 | 0.00023 B | 0.00024 B | 0.0018     | ND    | ND    | ND         | 0.00020                      | 0.2                        | 0.025             | mg/L  | 1311/7470 |
| Nickel                | ND      | ND     | ND        | ND        | 0.22       | ND    | ND    | ND         | 0.20                         | n/a                        | 11                | mg/L  | 1311/6010 |
| Potassium             | ND      | ND     | 9.2       | 4.5       | 3.2        | ND    | ND    | 2.2        | 2.0                          | n/a                        | n/a               | mg/L  | 1311/6010 |
| Selenium              | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | 1.0                        | 5.7               | mg/L  | 1311/6010 |
| Silver                | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | 5.0                        | 0.14              | mg/L  | 1311/6010 |
| Thallium <sup>d</sup> | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.040                        | n/a                        | 0.20              | mg/L  | 1311/6010 |
| Vanadium              | ND      | ND     | ND        | ND        | ND         | ND    | ND    | ND         | 0.20                         | n/a                        | 1.6               | mg/L  | 1311/6010 |
| Zinc                  | 1.3     | 0.40   | ND        | 0.55      | <u>8.7</u> | ND    | ND    | <u>7.3</u> | 0.20                         | n/a                        | 4.3               | mg/L  | 1311/6010 |

Underlined values indicate an exceedance of the Nonwastewater Universal Treatment Standard.

n/a – No applicable limit for analyte.

ND – Analyte not detected.

B: Analyte was detected in the associated method blank.

<sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24.

<sup>&</sup>lt;sup>c</sup> Nonwastewater Universal Treatment Standard. See 40 CFR § 268.48.

<sup>&</sup>lt;sup>d</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

Table 3. Summary of TCLP Metal Results – Liquid Samples

|                       |        | Sampl      | e ID   |       | Reporting | TCLP   | -     |           |
|-----------------------|--------|------------|--------|-------|-----------|--------|-------|-----------|
| Analyte               | SP-2   | SP-8       | SP-11  | SP-12 | Limita    | Limitb | Units | Method    |
| Aluminum              | 6.0    | ND         | 2.8    | ND    | 2.0       | n/a    | mg/L  | 1311/6010 |
| Antimony              | ND     | ND         | ND     | ND    | 2.0       | n/a    | mg/L  | 1311/6010 |
| Arsenic               | ND     | ND         | ND     | ND    | 0.20      | 5.0    | mg/L  | 1311/6010 |
| Barium                | ND     | ND         | ND     | ND    | 2.0       | 100.0  | mg/L  | 1311/6010 |
| Beryllium             | ND     | ND         | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |
| Cadmium               | ND     | ND         | ND     | ND    | 0.10      | 1.0    | mg/L  | 1311/6010 |
| Calcium <sup>c</sup>  | 241    | 17.1       | 6.3    | 8.3   | 2.0       | n/a    | mg/L  | 1311/6010 |
| Chromium              | ND     | ND         | ND     | ND    | 0.20      | 5.0    | mg/L  | 1311/6010 |
| Cobalt                | ND     | ND         | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |
| Copper                | ND     | ND         | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |
| Iron                  | 77.8   | 15.8       | 1.8    | ND    | 1.0       | n/a    | mg/L  | 1311/6010 |
| Lead                  | ND     | ND         | ND     | ND    | 0.20      | 5.0    | mg/L  | 1311/6010 |
| Magnesium             | 23.7   | 3.5        | 2.2    | 2.2   | 2.0       | n/a    | mg/L  | 1311/6010 |
| Manganese             | 5.8    | 0.41       | ND     | ND    | 0.13      | n/a    | mg/L  | 1311/6010 |
| Mercury               | 0.0014 | 0.00037    | 0.0048 | ND    | 0.00020   | 0.2    | mg/L  | 1311/6010 |
| Nickel                | 0.94   | 0.25       | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |
| Potassium             | 23.2   | ND         | ND     | ND    | 2.0       | n/a    | mg/L  | 1311/6010 |
| Selenium              | 0.38   | <u>2.6</u> | ND     | ND    | 0.20      | 1.0    | mg/L  | 1311/6010 |
| Silver                | ND     | ND         | ND     | ND    | 0.20      | 5.0    | mg/L  | 1311/6010 |
| Thallium <sup>c</sup> | ND     | ND         | ND     | ND    | 0.040     | n/a    | mg/L  | 1311/6010 |
| Vanadium              | ND     | ND         | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |
| Zinc                  | 83.6   | 3.0        | ND     | ND    | 0.20      | n/a    | mg/L  | 1311/6010 |

**Bold and underlined** values indicate an exceedance of the TCLP Limit.

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24.

<sup>&</sup>lt;sup>c</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample LCS recovery.

Table 4. Summary of TCLP Semivolatile Organic Compound Results – Solid Samples

|                                    |      |      |      | Sample ID |      |       | Reporting |        |                         |       |           |
|------------------------------------|------|------|------|-----------|------|-------|-----------|--------|-------------------------|-------|-----------|
| Analyte                            | SP-1 | SP-4 | SP-5 | SP-7      | SP-9 | SP-10 | SP-13     | Limita | TCLP Limit <sup>b</sup> | Units | Method    |
| 1,4-Dichlorobenzene                | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 7,500                   | μg/L  | 1311/8270 |
| 2,4,5-Trichlorophenol <sup>d</sup> | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 400,000                 | μg/L  | 1311/8270 |
| 2,4,6-Trichlorophenol              | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 2,000                   | μg/L  | 1311/8270 |
| 2,4-Dimethylphenol                 | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | n/a                     | μg/L  | 1311/8270 |
| 2,4-Dinitrotoluene                 | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 130                     | μg/L  | 1311/8270 |
| 2-Chlorophenol                     | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | n/a                     | μg/L  | 1311/8270 |
| 2-Methylphenol(o-Cresol)           | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 200,000                 | μg/L  | 1311/8270 |
| 3&4-Methylphenol(m&p Cresol)       | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 200,000°                | μg/L  | 1311/8270 |
| 4,6-Dinitro-2-methylphenol         | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | n/a                     | μg/L  | 1311/8270 |
| 4-Chloro-3-methylphenol            | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | n/a                     | μg/L  | 1311/8270 |
| Hexachloro-1,3-butadiene           | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 500                     | μg/L  | 1311/8270 |
| Hexachlorobenzene                  | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 130                     | μg/L  | 1311/8270 |
| Hexachloroethane                   | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 3,000                   | μg/L  | 1311/8270 |
| N-Nitrosodiphenylamine             | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | n/a                     | μg/L  | 1311/8270 |
| Nitrobenzene                       | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 2,000                   | μg/L  | 1311/8270 |
| Pyridine <sup>e</sup>              | ND   | ND   | ND   | ND        | ND   | ND    | ND        | 100    | 5,000                   | μg/L  | 1311/8270 |

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24

 $<sup>^{\</sup>text{c}}$  TCLP limit is 200,000  $\mu\text{g/L}$  for each analyte (m- & p-Cresol).

<sup>&</sup>lt;sup>d</sup> RPD value was outside control limits.

<sup>&</sup>lt;sup>e</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

Table 5. Summary of TCLP Semivolatile Organic Compound Results – Liquid Samples

|                              | Samp  | le ID | Reporting | TCLP               | -     |           |
|------------------------------|-------|-------|-----------|--------------------|-------|-----------|
| Analyte                      | SP-11 | SP-12 | Limita    | Limit <sup>b</sup> | Units | Method    |
| 1,4-Dichlorobenzene          | ND    | ND    | 100       | 7,500              | μg/L  | 1311/8270 |
| 2,4,5-Trichlorophenol        | ND    | ND    | 100       | 400,000            | μg/L  | 1311/8270 |
| 2,4,6-Trichlorophenol        | ND    | ND    | 100       | 2,000              | μg/L  | 1311/8270 |
| 2,4-Dimethylphenol           | ND    | ND    | 100       | n/a                | μg/L  | 1311/8270 |
| 2,4-Dinitrotoluene           | ND    | ND    | 100       | 130                | μg/L  | 1311/8270 |
| 2-Chlorophenol               | ND    | ND    | 100       | n/a                | μg/L  | 1311/8270 |
| 2-Methylphenol(o-Cresol)     | ND    | ND    | 100       | 200,000            | μg/L  | 1311/8270 |
| 3&4-Methylphenol(m&p Cresol) | ND    | ND    | 100       | 200,000°           | μg/L  | 1311/8270 |
| 4,6-Dinitro-2-methylphenol   | ND    | ND    | 100       | n/a                | μg/L  | 1311/8270 |
| 4-Chloro-3-methylphenol      | ND    | ND    | 100       | n/a                | μg/L  | 1311/8270 |
| Hexachloro-1,3-butadiene     | ND    | ND    | 100       | 500                | μg/L  | 1311/8270 |
| Hexachlorobenzene            | ND    | ND    | 100       | 130                | μg/L  | 1311/8270 |
| Hexachloroethane             | ND    | ND    | 100       | 3,000              | μg/L  | 1311/8270 |
| N-Nitrosodiphenylamine       | ND    | ND    | 100       | n/a                | μg/L  | 1311/8270 |
| Nitrobenzene                 | ND    | ND    | 100       | 2,000              | μg/L  | 1311/8270 |
| Pyridine                     | ND    | ND    | 100       | 5,000              | μg/L  | 1311/8270 |

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24.

 $<sup>^{</sup>c}$  TCLP limit is 200,000  $\mu g/L$  for each analyte (m- & p-Cresol).

Table 6. Summary of TCLP Volatile Organic Compound Results – Solid Samples

|                               |      |      | S    | ample ID | 1     |       | Reporting | TCLP   |       |           |
|-------------------------------|------|------|------|----------|-------|-------|-----------|--------|-------|-----------|
| Analyte                       | SP-1 | SP-5 | SP-7 | SP-9     | SP-10 | SP-13 | Limita    | Limitb | Units | Method    |
| 1,1-Dichloroethene            | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.7    | mg/L  | 1311/8260 |
| 1,2-Dichlorobenzene           | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | n/a    | mg/L  | 1311/8260 |
| 1,2-Dichloroethane            | ND   | ND   | ND   | 0.90     | ND    | ND    | 0.10      | 0.5    | mg/L  | 1311/8260 |
| 1,3-Dichlorobenzene           | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | n/a    | mg/L  | 1311/8260 |
| 1,4-Dichlorobenzene           | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 7.5    | mg/L  | 1311/8260 |
| 2-Butanone (MEK) <sup>c</sup> | ND   | ND   | ND   | ND       | ND    | ND    | 0.20      | 200    | mg/L  | 1311/8260 |
| Benzene <sup>c</sup>          | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.5    | mg/L  | 1311/8260 |
| Carbon tetrachloride          | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.5    | mg/L  | 1311/8260 |
| Chlorobenzene                 | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 100.0  | mg/L  | 1311/8260 |
| Chloroform                    | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 6.0    | mg/L  | 1311/8260 |
| Tetrachloroethene             | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.7    | mg/L  | 1311/8260 |
| Trichloroethene               | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.5    | mg/L  | 1311/8260 |
| Vinyl chloride                | ND   | ND   | ND   | ND       | ND    | ND    | 0.10      | 0.2    | mg/L  | 1311/8260 |

n/a – No applicable limit for analyte.

**Table 7. Summary of TCLP Volatile Organic Compound Results – Liquid Samples** 

| Tuble 7. Summar      | ,    | volume org | ,r    | 0 0=== 0= == 0 10 |                    | iquiu bu |           |
|----------------------|------|------------|-------|-------------------|--------------------|----------|-----------|
|                      |      | Sample ID  | _     | Reporting         | TCLP               |          |           |
| Analyte              | SP-4 | SP-11      | SP-12 | Limita            | Limit <sup>b</sup> | Units    | Method    |
| 1,1-Dichloroethene   | ND   | ND         | ND    | 0.10              | 0.7                | mg/L     | 1311/8260 |
| 1,2-Dichlorobenzene  | ND   | ND         | ND    | 0.10              | n/a                | mg/L     | 1311/8260 |
| 1,2-Dichloroethane   | ND   | ND         | ND    | 0.10              | 0.5                | mg/L     | 1311/8260 |
| 1,3-Dichlorobenzene  | ND   | ND         | ND    | 0.10              | n/a                | mg/L     | 1311/8260 |
| 1,4-Dichlorobenzene  | ND   | ND         | ND    | 0.10              | 7.5                | mg/L     | 1311/8260 |
| 2-Butanone (MEK)     | ND   | ND         | ND    | 0.20              | 200                | mg/L     | 1311/8260 |
| Benzene              | ND   | ND         | ND    | 0.10              | 0.5                | mg/L     | 1311/8260 |
| Carbon tetrachloride | ND   | ND         | ND    | 0.10              | 0.5                | mg/L     | 1311/8260 |
| Chlorobenzene        | ND   | ND         | ND    | 0.10              | 100.0              | mg/L     | 1311/8260 |
| Chloroform           | ND   | ND         | ND    | 0.10              | 6.0                | mg/L     | 1311/8260 |
| Tetrachloroethene    | ND   | ND         | ND    | 0.10              | 0.7                | mg/L     | 1311/8260 |
| Trichloroethene      | ND   | ND         | ND    | 0.10              | 0.5                | mg/L     | 1311/8260 |
| Vinyl chloride       | ND   | ND         | ND    | 0.10              | 0.2                | mg/L     | 1311/8260 |

n/a - No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24.

<sup>&</sup>lt;sup>c</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> See 40 CFR 261.24.

**Table 8. Summary of Total Metals Results – Solid Samples** 

|                        |             |            |             | Samp              |             |      |       | na Sampre |           | Soil             |       |        |
|------------------------|-------------|------------|-------------|-------------------|-------------|------|-------|-----------|-----------|------------------|-------|--------|
|                        |             |            |             | Sump              |             |      |       |           | Reporting | Screening        |       |        |
| Analyte                | SP-1        | SP-3       | SP-4        | SP-5              | SP-7        | SP-9 | SP-10 | SP-13     | Limita    | Levelb           | Units | Method |
| Aluminum <sup>c</sup>  | 21,000      | 86.2       | 6,670       | 2,830             | 5,900       | ND   | ND    | 3,760     | 19.6      | 1,100,000        | mg/kg | 6010   |
| Antimony <sup>c</sup>  | ND          | ND         | ND          | ND                | 3.6         | ND   | ND    | ND        | 2.9       | 470              | mg/kg | 6010   |
| Arsenic                | <u>17.0</u> | 1.6        | <u>7.6</u>  | 2.8               | <u>47.0</u> | ND   | ND    | 2.7       | 0.98      | 3                | mg/kg | 6010   |
| Barium <sup>c</sup>    | 614         | ND         | 188         | 64.4              | 45.4        | ND   | ND    | 61.9      | 19.6      | 220,000          | mg/kg | 6010   |
| Beryllium              | ND          | ND         | ND          | ND                | ND          | ND   | ND    | ND        | 0.49      | 230              | mg/kg | 6010   |
| Cadmium                | ND          | ND         | 0.67        | ND                | ND          | ND   | ND    | 0.58      | 3.6       | 98               | mg/kg | 6010   |
| Calcium <sup>c</sup>   | 84,300      | ND         | 71,100      | 13,400            | 8,880       | ND   | ND    | 5,990     | 943       | n/a              | mg/kg | 6010   |
| Chromium               | <u>37.6</u> | <u>7.6</u> | <u>31.7</u> | <u>12.6</u>       | <u>28.6</u> | ND   | ND    | <u>26</u> | 0.98      | 6.3 <sup>d</sup> | mg/kg | 6010   |
| Cobalt                 | 18.0        | 2.0        | 6.0         | 3.1               | <u>35.0</u> | ND   | ND    | 8.1       | 0.98      | 35               | mg/kg | 6010   |
| Copper                 | 1,560       | 9.4        | 84.2        | 28.5              | 3,310       | ND   | ND    | 223       | 7.1       | 47,000           | mg/kg | 6010   |
| Iron <sup>c</sup>      | 80,100      | 12,700     | 24,200      | 7,300             | 143,000     | 34.6 | 19.2  | 17,400    | 35.7      | 82,000           | mg/kg | 6010   |
| Lead <sup>c</sup>      | 51.0        | 0.48       | 33.2        | 18.8              | 56.6        | ND   | ND    | 94.2      | 3.6       | 800              | mg/kg | 6010   |
| Magnesium <sup>c</sup> | 11,000      | ND         | 3,750       | 2,530             | 1,900       | ND   | ND    | 3300      | 98        | n/a              | mg/kg | 6010   |
| Manganese <sup>c</sup> | 1,410       | 4.8        | 376         | 181               | 204         | ND   | ND    | 147       | 0.98      | 2,600            | mg/kg | 6010   |
| Mercury                | NDc         | 3.1°       | 0.96°       | 0.18 <sup>c</sup> | 0.058       | ND   | ND    | 0.43      | 0.018     | 35 <sup>e</sup>  | mg/kg | 7471   |
| Nickel                 | 18.7        | 3.2        | 40.9        | 9.5               | 17.5        | 15.1 | 30.3  | 20.8      | 3.9       | 2,200            | mg/kg | 6010   |
| Potassium <sup>c</sup> | 2,330       | ND         | 1,520       | 775               | 558         | ND   | ND    | 784       | 98        | n/a              | mg/kg | 6010   |
| Selenium               | ND          | 489        | 7.2         | 2.3               | 3.7         | ND   | ND    | ND        | 2         | 580              | mg/kg | 6010   |
| Silver                 | 1.1         | ND         | ND          | ND                | 1.1         | ND   | ND    | ND        | 0.98      | 580              | mg/kg | 6010   |
| Sodium                 | 447         | 169        | 1,050       | 938               | 426         | ND   | ND    | 192       | 98        | n/a              | mg/kg | 6010   |
| Thallium <sup>c</sup>  | ND          | ND         | ND          | ND                | ND          | ND   | ND    | ND        | 4.7       | 1.2              | mg/kg | 6010   |
| Vanadium               | 59.5        | 25.7       | 114         | 42.3              | 13.8        | 36.1 | 68.9  | 15.3      | 4.9       | 580              | mg/kg | 6010   |
| Zinc <sup>c</sup>      | 78.0        | 6.1        | 882         | 391               | 3,240       | ND   | ND    | 1,180     | 14.3      | 35,000           | mg/kg | 6010   |

**Bold** and <u>underlined</u> values indicate an exceedance of the Soil Screening Level.

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> November 2014 EPA Regional Screening Level Summary Table industrial soil screening levels with a Target Hazard Quotient of 0.1.

<sup>&</sup>lt;sup>c</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

<sup>&</sup>lt;sup>d</sup> Soil screening level is for hexavalent chromium.

<sup>&</sup>lt;sup>e</sup> Soil screening level is for Mercuric chloride and other mercury salts.

**Table 9. Summary of Total Metals Results – Liquid Samples** 

|                        |            |        | Samp   | ole ID |       |        | Reporting | _     |       |        |
|------------------------|------------|--------|--------|--------|-------|--------|-----------|-------|-------|--------|
| Analyte                | SP-2       | SP-6   | SP-11  | SP-12  | SP-14 | SP-15  | Limita    | WUTSb | Units | Method |
| Aluminum <sup>c</sup>  | 6.9        | ND     | ND     | 0.10   | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Antimony c             | ND         | ND     | ND     | ND     | ND    | ND     | 0.0010    | 1.9   | mg/L  | 6020   |
| Arsenic                | 0.0063     | ND     | ND     | ND     | ND    | ND     | 0.0010    | 1.4   | mg/L  | 6020   |
| Barium <sup>c</sup>    | 0.05       | ND     | 0.0093 | 0.010  | ND    | ND     | 0.0010    | 1.2   | mg/L  | 6020   |
| Beryllium              | ND         | ND     | ND     | ND     | ND    | ND     | 0.0010    | 0.82  | mg/L  | 6020   |
| Cadmium                | 0.0059     | ND     | ND     | ND     | ND    | ND     | 0.0010    | 0.69  | mg/L  | 6020   |
| Calcium c              | 274        | ND     | 9.0    | 9.6    | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Chromium               | 0.049      | ND     | ND     | ND     | ND    | ND     | 0.0010    | 2.77  | mg/L  | 6020   |
| Cobalt                 | 0.035      | ND     | ND     | ND     | ND    | ND     | 0.0010    | n/a   | mg/L  | 6020   |
| Copper                 | 0.34       | ND     | ND     | 0.0085 | ND    | ND     | 0.0030    | n/a   | mg/L  | 6020   |
| Iron <sup>c</sup>      | 111        | ND     | ND     | 0.18   | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Lead <sup>c</sup>      | 0.0091     | ND     | ND     | 0.0020 | ND    | ND     | 0.0010    | 0.69  | mg/L  | 6020   |
| Magnesium <sup>c</sup> | 26.9       | ND     | 2.2    | 3.2    | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Manganese c            | 7.0        | 0.0010 | 0.0013 | 0.0072 | ND    | 0.0012 | 0.0010    | n/a   | mg/L  | 6020   |
| Mercury                | 1.5        | 0.3    | ND     | ND     | ND    | ND     | 0.0010    | 150   | μg/L  | 7470   |
| Nickel                 | 0.95       | ND     | ND     | ND     | ND    | ND     | 0.0010    | 3.98  | mg/L  | 6020   |
| Potassium <sup>c</sup> | 23.6       | ND     | 1.6    | 1.6    | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Selenium               | 0.45       | ND     | ND     | ND     | ND    | ND     | 0.0010    | 0.82  | mg/L  | 6020   |
| Silver                 | ND         | ND     | ND     | ND     | ND    | ND     | 0.00050   | 0.43  | mg/L  | 6020   |
| Sodium                 | 778        | ND     | 72.3   | 72.0   | ND    | ND     | 0.10      | n/a   | mg/L  | 6020   |
| Thallium <sup>c</sup>  | ND         | ND     | ND     | ND     | ND    | ND     | 0.00050   | 1.4   | mg/L  | 6020   |
| Vanadium               | 0.016      | ND     | ND     | ND     | ND    | ND     | 0.0010    | 4.3   | mg/L  | 6020   |
| Zinc <sup>c</sup>      | <u>114</u> | 0.013  | ND     | 0.060  | ND    | ND     | 0.0050    | 2.61  | mg/L  | 6020   |

**Bold and underlined** values indicate an exceedance of the Wastewater Universal Treatment Standard.

 $<sup>\</sup>overline{n/a}$  – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> Wastewater Universal Treatment Standard. See 40 CFR § 268.48.

<sup>&</sup>lt;sup>c</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

Table 10. Summary of Total Semivolatile Organic Compound Results – Solid Samples

| Sample ID Soil Soil          |      |      |      |           |      |       |       |                              |                                 |                  |       |        |  |
|------------------------------|------|------|------|-----------|------|-------|-------|------------------------------|---------------------------------|------------------|-------|--------|--|
|                              |      |      |      | Sample ID | )    |       |       |                              |                                 |                  |       |        |  |
| Analyte                      | SP-1 | SP-4 | SP-5 | SP-7      | SP-9 | SP-10 | SP-13 | Reporting Limit <sup>a</sup> | Screening<br>Level <sup>b</sup> | NUTSc            | Units | Method |  |
| 1,2,4-Trichlorobenzene       | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 26                              | 19               | mg/kg | 8270   |  |
| 1,2-Dichlorobenzene          | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 930                             | 6.0              | mg/kg | 8270   |  |
| 1,3-Dichlorobenzene          | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 6.0              | mg/kg | 8270   |  |
| 1,4-Dichlorobenzene          | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 11                              | 6.0              | mg/kg | 8270   |  |
| 2,2'-Oxybis(1-chloropropane) | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | n/a              | mg/kg | 8270   |  |
| 2,4,5-Trichlorophenol        | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 8,200                           | 7.4              | mg/kg | 8270   |  |
| 2,4,6-Trichlorophenol        | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 86                              | 7.4              | mg/kg | 8270   |  |
| 2,4-Dichlorophenol           | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 250                             | 14               | mg/kg | 8270   |  |
| 2,4-Dimethylphenol           | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 1,600                           | 14               | mg/kg | 8270   |  |
| 2,4-Dinitrophenol            | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 160                             | 160              | mg/kg | 8270   |  |
| 2,4-Dinitrotoluene           | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 7.4                             | 140              | mg/kg | 8270   |  |
| 2,6-Dinitrotoluene           | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 1.5                             | 28               | mg/kg | 8270   |  |
| 2-Chloronaphthalene          | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 5.6              | mg/kg | 8270   |  |
| 2-Chlorophenol               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 580                             | 5.7              | mg/kg | 8270   |  |
| 2-Methylnaphthalene          | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 300                             | n/a              | mg/kg | 8270   |  |
| 2-Methylphenol(o-Cresol)     | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 4,100                           | 5.6              | mg/kg | 8270   |  |
| 2-Nitroaniline               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 800                             | 14               | mg/kg | 8270   |  |
| 2-Nitrophenol                | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 13               | mg/kg | 8270   |  |
| 3&4-Chloroaniline            | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 11                              | 16               | mg/kg | 8270   |  |
| 3&4-Methylphenol(m&p cresol) | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 8,200                           | 5.6 <sup>d</sup> | mg/kg | 8270   |  |
| 3,3'-Dichlorobenzidine       | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 5.1                             | n/a              | mg/kg | 8270   |  |
| 3-Nitroaniline               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | n/a              | mg/kg | 8270   |  |
| 4,6-Dinitro-2-methylphenol   | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 66                              | n/a              | mg/kg | 8270   |  |
| 4-Bromophenylphenyl ether    | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 15               | mg/kg | 8270   |  |
| 4-Chloro-3-methylphenol      | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 8,200                           | 14               | mg/kg | 8270   |  |
| 4-Nitroaniline               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 110                             | 28               | mg/kg | 8270   |  |
| 4-Nitrophenol                | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 29               | mg/kg | 8270   |  |
| Acenaphthene                 | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 4,500                           | 3.4              | mg/kg | 8270   |  |
| Acenaphthylene               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | n/a                             | 3.4              | mg/kg | 8270   |  |
| Anthracene                   | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 23,000                          | 3.4              | mg/kg | 8270   |  |
| Benzo(a)anthracene           | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 2.9                             | 3.4              | mg/kg | 8270   |  |
| Benzo(a)pyrene               | ND   | ND   | ND   | ND        | ND   | ND    | ND    | 0.33                         | 0.29                            | 3.4              | mg/kg | 8270   |  |

Table 10. Summary of Total Semivolatile Organic Compound Results – Solid Samples

|                              | 10. Sullilla |      |      | Sample ID |      | ,     |       |        | Soil<br>Screening |                   |       |        |
|------------------------------|--------------|------|------|-----------|------|-------|-------|--------|-------------------|-------------------|-------|--------|
|                              |              |      |      |           |      |       |       |        | Screening         |                   |       |        |
| Analyte                      | SP-1         | SP-4 | SP-5 | SP-7      | SP-9 | SP-10 | SP-13 | Limita | Levelb            | NUTS <sup>c</sup> | Units | Method |
| Benzo(b)fluoranthene         | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 2.9               | 6.8               | mg/kg | 8270   |
| Benzo(g,h,i)perylene         | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | n/a               | 1.8               | mg/kg | 8270   |
| Benzo(k)fluoranthene         | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 29                | 6.8               | mg/kg | 8270   |
| Benzoic acid                 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 330,000           | n/a               | mg/kg | 8270   |
| Benzyl alcohol               | ND           | ND   | ND   | 1.4       | ND   | ND    | ND    | 0.33   | 8,200             | n/a               | mg/kg | 8270   |
| Butylbenzylphthalate         | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | n/a               | 28                | mg/kg | 8270   |
| Carbazole                    | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | n/a               | n/a               | mg/kg | 8270   |
| Chrysene                     | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 290               | 3.4               | mg/kg | 8270   |
| Di-n-butyl phthalate         | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 820               | 28                | mg/kg | 8270   |
| Di-n-octylphthalate          | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 820               | 28                | mg/kg | 8270   |
| Dibenz(a,h)anthracene        | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 0.29              | 8.2               | mg/kg | 8270   |
| Dibenzofuran                 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 100               | n/a               | mg/kg | 8270   |
| Diethylphthalate             | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 66,000            | 28                | mg/kg | 8270   |
| Dimethylphthalate            | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | n/a               | 28                | mg/kg | 8270   |
| Fluoranthene                 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 3,000             | 3.4               | mg/kg | 8270   |
| Fluorene                     | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 3,000             | 3.4               | mg/kg | 8270   |
| Hexachloro-1,3-butadiene     | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 5.3               | 5.6               | mg/kg | 8270   |
| Hexachlorobenzene            | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 0.96              | 10                | mg/kg | 8270   |
| Hexachlorocyclopentadiene M1 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 0.75              | 2.4               | mg/kg | 8270   |
| Hexachloroethane             | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 8.0               | 30                | mg/kg | 8270   |
| Indeno(1,2,3-cd)pyrene       | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 2.9               | 3.4               | mg/kg | 8270   |
| Isophorone                   | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 2,400             | n/a               | mg/kg | 8270   |
| N-Nitroso-di-n-propylamine   | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 0.33              | n/a               | mg/kg | 8270   |
| N-Nitrosodiphenylamine       | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 470               | 13                | mg/kg | 8270   |
| Naphthalene                  | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 17                | 5.6               | mg/kg | 8270   |
| Nitrobenzene                 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 22                | 14                | mg/kg | 8270   |
| Pentachlorophenol            | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 4                 | 7.4               | mg/kg | 8270   |
| Phenanthrene                 | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | n/a               | 5.6               | mg/kg | 8270   |
| Phenol                       | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 25,000            | 6.2               | mg/kg | 8270   |
| Pyrene                       | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 2,300             | 8.2               | mg/kg | 8270   |
| Pyridine                     | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 120               | 16                | mg/kg | 8270   |
| bis(2-Chloroethoxy)methane   | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 250               | 7.2               | mg/kg | 8270   |
| bis(2-Chloroethyl) ether     | ND           | ND   | ND   | ND        | ND   | ND    | ND    | 0.33   | 1.0               | 6.0               | mg/kg | 8270   |

Table 10. Summary of Total Semivolatile Organic Compound Results - Solid Samples

|                            |      |      | S    | ample ID | )    |       |       | Soil               |                    |                   |       |        |
|----------------------------|------|------|------|----------|------|-------|-------|--------------------|--------------------|-------------------|-------|--------|
|                            |      |      |      |          |      |       |       | Reporting          |                    |                   |       |        |
| Analyte                    | SP-1 | SP-4 | SP-5 | SP-7     | SP-9 | SP-10 | SP-13 | Limit <sup>a</sup> | Level <sup>b</sup> | NUTS <sup>c</sup> | Units | Method |
| bis(2-Ethylhexyl)phthalate | ND   | ND   | ND   | ND       | ND   | ND    | ND    | 0.33               | 160                | 28                | mg/kg | 8270   |

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> November 2014 EPA Regional Screening Level (RSL) Summary Table industrial soil screening levels with a Target Hazard Quotient of 0.1.

<sup>&</sup>lt;sup>c</sup> Nonwastewater Universal Treatment Standard. See 40 CFR § 268.48.

<sup>&</sup>lt;sup>d</sup> Screening level is for each individual analyte.

Table 11. Summary of Total Semivolatile Organic Compound Results – Liquid Samples

| Table 11. Summary of Total Semivolatile Organic Compound Results – Liquid Samples |      |       |          |       |       |           |                  |       |        |  |  |
|-----------------------------------------------------------------------------------|------|-------|----------|-------|-------|-----------|------------------|-------|--------|--|--|
|                                                                                   |      |       | Sample 1 |       |       | Reporting |                  |       |        |  |  |
| Analyte                                                                           | SP-6 | SP-11 | SP-12    | SP-14 | SP-15 | Limita    | WUTSb            | Units | Method |  |  |
| 1,2,4-Trichlorobenzene                                                            | ND   | ND    | ND       | ND    | ND    | 10.0      | 55               | μg/L  | 8270   |  |  |
| 1,2-Dichlorobenzene                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | 88               | μg/L  | 8270   |  |  |
| 1,3-Dichlorobenzene                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | 36               | μg/L  | 8270   |  |  |
| 1,4-Dichlorobenzene                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | 90               | μg/L  | 8270   |  |  |
| 2,2'-Oxybis(1-chloropropane)                                                      | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| 2,4,5-Trichlorophenol                                                             | ND   | ND    | ND       | ND    | ND    | 10.0      | 180              | μg/L  | 8270   |  |  |
| 2,4,6-Trichlorophenol                                                             | ND   | ND    | ND       | ND    | ND    | 10.0      | 35               | μg/L  | 8270   |  |  |
| 2,4-Dichlorophenol                                                                | ND   | ND    | ND       | ND    | ND    | 10.0      | 44               | μg/L  | 8270   |  |  |
| 2,4-Dimethylphenol                                                                | ND   | ND    | ND       | ND    | ND    | 10.0      | 36               | μg/L  | 8270   |  |  |
| 2,4-Dinitrophenol                                                                 | ND   | ND    | ND       | ND    | ND    | 10.0      | 120              | μg/L  | 8270   |  |  |
| 2,4-Dinitrotoluene                                                                | ND   | ND    | ND       | ND    | ND    | 10.0      | 320              | μg/L  | 8270   |  |  |
| 2,6-Dinitrotoluene                                                                | ND   | ND    | ND       | ND    | ND    | 10.0      | 550              | μg/L  | 8270   |  |  |
| 2-Chloronaphthalene                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | 55               | μg/L  | 8270   |  |  |
| 2-Chlorophenol                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | 44               | μg/L  | 8270   |  |  |
| 2-Methylnaphthalene                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| 2-Methylphenol(o-Cresol)                                                          | ND   | ND    | ND       | ND    | ND    | 10.0      | 110              | μg/L  | 8270   |  |  |
| 2-Nitroaniline                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | 270              | μg/L  | 8270   |  |  |
| 2-Nitrophenol                                                                     | ND   | ND    | ND       | ND    | ND    | 10.0      | 28               | μg/L  | 8270   |  |  |
| 3&4-Chloroaniline                                                                 | ND   | ND    | ND       | ND    | ND    | 10.0      | 460°             | μg/L  | 8270   |  |  |
| 3&4-Methylphenol(m&p cresol)                                                      | ND   | ND    | ND       | ND    | ND    | 10.0      | 770 <sup>d</sup> | μg/L  | 8270   |  |  |
| 3,3'-Dichlorobenzidine                                                            | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| 3-Nitroaniline                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| 4,6-Dinitro-2-methylphenol                                                        | ND   | ND    | ND       | ND    | ND    | 10.0      | 280              | μg/L  | 8270   |  |  |
| 4-Bromophenylphenyl ether                                                         | ND   | ND    | ND       | ND    | ND    | 10.0      | 55               | μg/L  | 8270   |  |  |
| 4-Chloro-3-methylphenol                                                           | ND   | ND    | ND       | ND    | ND    | 10.0      | 18               | μg/L  | 8270   |  |  |
| 4-Chlorophenylphenyl ether                                                        | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| 4-Nitroaniline                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | 28               | μg/L  | 8270   |  |  |
| 4-Nitrophenol                                                                     | ND   | ND    | ND       | ND    | ND    | 10.0      | 120              | μg/L  | 8270   |  |  |
| Acenaphthene                                                                      | ND   | ND    | ND       | ND    | ND    | 10.0      | 59               | μg/L  | 8270   |  |  |
| Acenaphthylene                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | 59               | μg/L  | 8270   |  |  |
| Anthracene                                                                        | ND   | ND    | ND       | ND    | ND    | 10.0      | 59               | μg/L  | 8270   |  |  |
| Benzo(a)anthracene                                                                | ND   | ND    | ND       | ND    | ND    | 10.0      | 59               | μg/L  | 8270   |  |  |
| Benzo(a)pyrene                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | 61               | μg/L  | 8270   |  |  |
| Benzo(b)fluoranthene                                                              | ND   | ND    | ND       | ND    | ND    | 10.0      | 110              | μg/L  | 8270   |  |  |
| Benzo(g,h,i)perylene                                                              | ND   | ND    | ND       | ND    | ND    | 10.0      | 5.5              | μg/L  | 8270   |  |  |
| Benzo(k)fluoranthene                                                              | ND   | ND    | ND       | ND    | ND    | 10.0      | 110              | μg/L  | 8270   |  |  |
| Benzoic acid                                                                      | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| Benzyl alcohol                                                                    | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| Butylbenzylphthalate                                                              | ND   | ND    | ND       | ND    | ND    | 10.0      | 17               | μg/L  | 8270   |  |  |
| Carbazole                                                                         | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a              | μg/L  | 8270   |  |  |
| Chrysene                                                                          | ND   | ND    | ND       | ND    | ND    | 10.0      | 59               | μg/L  | 8270   |  |  |
| Di-n-butyl phthalate                                                              | ND   | ND    | ND       | ND    | ND    | 10.0      | 57               | μg/L  | 8270   |  |  |
| Di-n-octylphthalate                                                               | ND   | ND    | ND       | ND    | ND    | 10.0      | 17               | μg/L  | 8270   |  |  |
| Dibenz(a,h)anthracene                                                             | ND   | ND    | ND       | ND    | ND    | 10.0      | 55               | μg/L  | 8270   |  |  |

Table 11. Summary of Total Semivolatile Organic Compound Results – Liquid Samples

|                            |      | \$    | Sample I | D     |       | Reporting |                   |       | _      |
|----------------------------|------|-------|----------|-------|-------|-----------|-------------------|-------|--------|
| Analyte                    | SP-6 | SP-11 | SP-12    | SP-14 | SP-15 | Limita    | WUTS <sup>b</sup> | Units | Method |
| Dibenzofuran               | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a               | μg/L  | 8270   |
| Diethylphthalate           | ND   | ND    | ND       | ND    | ND    | 10.0      | 200               | μg/L  | 8270   |
| Dimethylphthalate          | ND   | ND    | ND       | ND    | ND    | 10.0      | 47                | μg/L  | 8270   |
| Fluoranthene               | ND   | ND    | ND       | ND    | ND    | 10.0      | 68                | μg/L  | 8270   |
| Fluorene                   | ND   | ND    | ND       | ND    | ND    | 10.0      | 59                | μg/L  | 8270   |
| Hexachloro-1,3-butadiene   | ND   | ND    | ND       | ND    | ND    | 10.0      | 55                | μg/L  | 8270   |
| Hexachlorobenzene          | ND   | ND    | ND       | ND    | ND    | 10.0      | 55                | μg/L  | 8270   |
| Hexachlorocyclopentadiene  | ND   | ND    | ND       | ND    | ND    | 10.0      | 57                | μg/L  | 8270   |
| Hexachloroethane           | ND   | ND    | ND       | ND    | ND    | 10.0      | 55                | μg/L  | 8270   |
| Indeno(1,2,3-cd)pyrene     | ND   | ND    | ND       | ND    | ND    | 10.0      | 5.59              | μg/L  | 8270   |
| Isophorone                 | ND   | ND    | ND       | ND    | ND    | 10.0      | n/a               | μg/L  | 8270   |
| N-Nitroso-di-n-propylamine | ND   | ND    | ND       | ND    | ND    | 10.0      | 400               | μg/L  | 8270   |
| N-Nitrosodiphenylamine     | ND   | ND    | ND       | ND    | ND    | 10.0      | 920               | μg/L  | 8270   |
| Naphthalene                | ND   | ND    | ND       | ND    | ND    | 10.0      | 59                | μg/L  | 8270   |
| Nitrobenzene               | ND   | ND    | ND       | ND    | ND    | 10.0      | 68                | μg/L  | 8270   |
| Pentachlorophenol          | ND   | ND    | ND       | ND    | ND    | 10.0      | 89                | μg/L  | 8270   |
| Phenanthrene               | ND   | ND    | ND       | ND    | ND    | 10.0      | 59                | μg/L  | 8270   |
| Phenol                     | ND   | ND    | ND       | ND    | ND    | 10.0      | 39                | μg/L  | 8270   |
| Pyrene                     | ND   | ND    | ND       | ND    | ND    | 10.0      | 67                | μg/L  | 8270   |
| Pyridine                   | ND   | ND    | ND       | ND    | ND    | 10.0      | 14                | μg/L  | 8270   |
| bis(2-Chloroethoxy)methane | ND   | ND    | ND       | ND    | ND    | 10.0      | 36                | μg/L  | 8270   |
| bis(2-Chloroethyl) ether   | ND   | ND    | ND       | ND    | ND    | 10.0      | 33                | μg/L  | 8270   |
| bis(2-Ethylhexyl)phthalate | ND   | ND    | ND       | ND    | ND    | 10.0      | 280               | μg/L  | 8270   |

n/a – No applicable limit for analyte.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> Wastewater Universal Treatment Standard. See 40 CFR § 268.48.

Table 12. Summary of Total Volatile Organic Compound Results – Solid Samples

|                                |      | <u>, , , , , , , , , , , , , , , , , , , </u> |       | mple ID |      | 8     | <u>F</u> - |                                 | Soil                            |      |       |        |
|--------------------------------|------|-----------------------------------------------|-------|---------|------|-------|------------|---------------------------------|---------------------------------|------|-------|--------|
| Analyte                        | SP-1 | SP-4                                          | SP-5  | SP-7    | SP-9 | SP-10 | SP-13      | Reporting<br>Limit <sup>a</sup> | Screening<br>Level <sup>b</sup> | NUTS | Units | Method |
| 1,1,1,2-Tetrachloroethane      | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 8.8                             | 6.0  | mg/kg | 8260   |
| 1,1,1-Trichloroethane          | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 3,600                           | 6.0  | mg/kg | 8260   |
| 1,1,2,2-Tetrachloroethane      | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 2.7                             | 6.0  | mg/kg | 8260   |
| 1,1,2-Trichloroethane          | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 0.63                            | 6.0  | mg/kg | 8260   |
| 1,1,2-Trichlorotrifluoroethane | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 17,000                          | 30   | mg/kg | 8260   |
| 1,1-Dichloroethane             | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 16                              | 6.0  | mg/kg | 8260   |
| 1,1-Dichloroethene             | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 100                             | 6.0  | mg/kg | 8260   |
| 1,1-Dichloropropene            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | n/a                             | n/a  | mg/kg | 8260   |
| 1,2,3-Trichlorobenzene         | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 93                              | n/a  | mg/kg | 8260   |
| 1,2,3-Trichloropropane         | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 0.11                            | 30   | mg/kg | 8260   |
| 1,2,3-Trimethylbenzene         | ND   | ND                                            | ND    | 0.044   | ND   | ND    | ND         | 0.011                           | 21                              | n/a  | mg/kg | 8260   |
| 1,2,4-Trichlorobenzene         | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 26                              | 19   | mg/kg | 8260   |
| 1,2,4-Trimethylbenzene         | ND   | ND                                            | ND    | 0.084   | ND   | ND    | ND         | 0.011                           | 24                              | n/a  | mg/kg | 8260   |
| 1,2-Dibromo-3-chloropropane    | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 0.064                           | 15   | mg/kg | 8260   |
| 1,2-Dibromoethane (EDB)        | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 0.16                            | 15   | mg/kg | 8260   |
| 1,2-Dichlorobenzene            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 930                             | 6.0  | mg/kg | 8260   |
| 1,2-Dichloroethane             | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 2.0                             | 6.0  | mg/kg | 8260   |
| 1,2-Dichloroethene (Total)     | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.022                           | n/a                             | n/a  | mg/kg | 8260   |
| 1,2-Dichloropropane            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 4.4                             | 18   | mg/kg | 8260   |
| 1,3,5-Trimethylbenzene         | ND   | ND                                            | ND    | 0.050   | ND   | ND    | ND         | 0.011                           | 1,200                           | n/a  | mg/kg | 8260   |
| 1,3-Butadiene                  | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.022                           | 0.26                            | n/a  | mg/kg | 8260   |
| 1,3-Dichlorobenzene            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | n/a                             | 6.0  | mg/kg | 8260   |
| 1,3-Dichloropropane            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 2,300                           | n/a  | mg/kg | 8260   |
| 1,4-Dichlorobenzene            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 11                              | 6.0  | mg/kg | 8260   |
| 2,2-Dichloropropane            | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | n/a                             | n/a  | mg/kg | 8260   |
| 2-Butanone (MEK)               | ND   | 0.16                                          | 0.072 | 0.021   | ND   | ND    | ND         | 0.022                           | 19,000                          | 36   | mg/kg | 8260   |
| 2-Chlorotoluene                | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | 2,300                           | n/a  | mg/kg | 8260   |
| 2-Hexanone                     | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.022                           | 130                             | n/a  | mg/kg | 8260   |
| 2-Methyl-1,3-butadiene         | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.022                           | n/a                             | n/a  | mg/kg | 8260   |
| 2-Methylpentane                | ND   | ND                                            | ND    | ND      | ND   | ND    | ND         | 0.011                           | n/a                             | n/a  | mg/kg | 8260   |

Table 12. Summary of Total Volatile Organic Compound Results – Solid Samples

| Table 12. Summary of Total Volatile Organic Compound Results – Solid Samples |      |       |        |         |      |       |       |           |                    |       |       |        |
|------------------------------------------------------------------------------|------|-------|--------|---------|------|-------|-------|-----------|--------------------|-------|-------|--------|
|                                                                              |      |       | Sa     | mple ID |      |       |       | Reporting | Soil<br>Screening  |       |       |        |
| Analyte                                                                      | SP-1 | SP-4  | SP-5   | SP-7    | SP-9 | SP-10 | SP-13 | Limita    | Level <sup>b</sup> | NUTSc | Units | Method |
| 2-Propanol                                                                   | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.45      | 24,000             | n/a   | mg/kg | 8260   |
| 3-Methylpentane                                                              | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | n/a                | n/a   | mg/kg | 8260   |
| 4-Chlorotoluene                                                              | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 2,300              | n/a   | mg/kg | 8260   |
| Acetone                                                                      | ND   | 0.53  | 0.23   | 0.054   | ND   | ND    | 0.022 | 0.022     | 67,000             | 160   | mg/kg | 8260   |
| Acetonitrile                                                                 | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.22      | 340                | 38    | mg/kg | 8260   |
| Acrylonitrile                                                                | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.045     | 1.1                | 84    | mg/kg | 8260   |
| Benzene                                                                      | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 5.1                | 10    | mg/kg | 8260   |
| Bromobenzene                                                                 | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 180                | n/a   | mg/kg | 8260   |
| Bromochloromethane                                                           | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 63                 | n/a   | mg/kg | 8260   |
| Bromodichloromethane                                                         | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 1.3                | 15    | mg/kg | 8260   |
| Bromoform                                                                    | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 86                 | 15    | mg/kg | 8260   |
| Bromomethane                                                                 | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 3                  | 15    | mg/kg | 8260   |
| Carbon disulfide                                                             | ND   | 0.033 | 0.0086 | ND      | ND   | ND    | ND    | 0.011     | 350                | n/a   | mg/kg | 8260   |
| Carbon tetrachloride                                                         | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 2.9                | 6.0   | mg/kg | 8260   |
| Chlorobenzene                                                                | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 130                | 6.0   | mg/kg | 8260   |
| Chloroethane                                                                 | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 5,700              | 6.0   | mg/kg | 8260   |
| Chloroform                                                                   | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 1.4                | 6.0   | mg/kg | 8260   |
| Chloromethane                                                                | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 46                 | 30    | mg/kg | 8260   |
| Chloroprene                                                                  | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 0.044              | 0.28  | mg/kg | 8260   |
| Cyclohexane                                                                  | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 2,700              | n/a   | mg/kg | 8260   |
| Dibromochloromethane                                                         | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 3.3                | 15    | mg/kg | 8260   |
| Dibromomethane                                                               | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 9.8                | 15    | mg/kg | 8260   |
| Dichlorodifluoromethane                                                      | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 37                 | 7.2   | mg/kg | 8260   |
| Ethanol                                                                      | ND   | ND    | ND     | ND      | ND   | ND    | 0.96  | 1.1       | n/a                | n/a   | mg/kg | 8260   |
| Ethyl methacrylate                                                           | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.022     | 710                | 160   | mg/kg | 8260   |
| Ethylbenzene                                                                 | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 25                 | 10    | mg/kg | 8260   |
| Hexachloro-1,3-butadiene                                                     | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | 5.3                | 5.6   | mg/kg | 8260   |
| Isopentane                                                                   | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.011     | n/a                | n/a   | mg/kg | 8260   |
| Isopropylbenzene (Cumene)                                                    | ND   | ND    | ND     | 0.0057  | ND   | ND    | ND    | 0.011     | 990                | n/a   | mg/kg | 8260   |
| Methacrylonitrile                                                            | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.22      | 10                 | 84    | mg/kg | 8260   |
| Methyl acetate                                                               | ND   | ND    | ND     | ND      | ND   | ND    | ND    | 0.022     | 120,000            | n/a   | mg/kg | 8260   |

Table 12. Summary of Total Volatile Organic Compound Results – Solid Samples

|                           | able 12. S | ummary |        |         | the O | game  | Compo | dia Resu  | r                  | Dampics |       |        |
|---------------------------|------------|--------|--------|---------|-------|-------|-------|-----------|--------------------|---------|-------|--------|
|                           |            |        | Sa     | mple ID |       |       |       | Reporting | Soil<br>Screening  |         |       |        |
| Analyte                   | SP-1       | SP-4   | SP-5   | SP-7    | SP-9  | SP-10 | SP-13 | Limita    | Level <sup>b</sup> | NUTSc   | Units | Method |
| Methyl methacrylate       | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.022     | 1,900              | 160     | mg/kg | 8260   |
| Methyl-tert-butyl ether   | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 210                | n/a     | mg/kg | 8260   |
| Methylcyclohexane         | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.022     | n/a                | n/a     | mg/kg | 8260   |
| Methylcyclopentane        | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | n/a                | n/a     | mg/kg | 8260   |
| Methylene Chloride        | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 320                | 30      | mg/kg | 8260   |
| Naphthalene               | ND         | ND     | 0.0078 | ND      | ND    | ND    | ND    | 0.011     | 17                 | 5.6     | mg/kg | 8260   |
| Propionitrile             | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.045     | n/a                | n/a     | mg/kg | 8260   |
| Styrene                   | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 3,500              | n/a     | mg/kg | 8260   |
| Tetrachloroethene         | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 39                 | 6.0     | mg/kg | 8260   |
| Tetrahydrofuran           | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.022     | 9,600              | n/a     | mg/kg | 8260   |
| Toluene                   | ND         | ND     | ND     | 0.0085  | ND    | ND    | ND    | 0.011     | 4,700              | 10      | mg/kg | 8260   |
| Trichloroethene           | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 1.9                | 6.0     | mg/kg | 8260   |
| Trichlorofluoromethane    | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 310                | 30      | mg/kg | 8260   |
| Vinyl chloride            | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.0045    | 1.7                | 6       | mg/kg | 8260   |
| Xylene (Total)            | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.033     | 280                | 30      | mg/kg | 8260   |
| cis-1,2-Dichloroethene    | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 230                | n/a     | mg/kg | 8260   |
| cis-1,3-Dichloropropene   | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 8.2                | 18      | mg/kg | 8260   |
| m&p-Xylene                | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.022     | 240 <sup>d</sup>   | n/a     | mg/kg | 8260   |
| n-Butanol                 | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.45      | 12,000             | 2.6     | mg/kg | 8260   |
| n-Butylbenzene            | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 5,800              | n/a     | mg/kg | 8260   |
| n-Heptane                 | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | n/a                | n/a     | mg/kg | 8260   |
| n-Hexane                  | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 250                | n/a     | mg/kg | 8260   |
| n-Pentane                 | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.022     | 340                | n/a     | mg/kg | 8260   |
| n-Propylbenzene           | ND         | ND     | ND     | 0.0058  | ND    | ND    | ND    | 0.011     | n/a                | n/a     | mg/kg | 8260   |
| o-Xylene                  | ND         | ND     | ND     | 0.010   | ND    | ND    | ND    | 0.011     | 280                | n/a     | mg/kg | 8260   |
| p-Isopropyltoluene        | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | n/a                | n/a     | mg/kg | 8260   |
| sec-Butylbenzene          | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 12,000             | n/a     | mg/kg | 8260   |
| tert-Butyl Alcohol        | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.45      | n/a                | n/a     | mg/kg | 8260   |
| tert-Butylbenzene         | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 12,000             | n/a     | mg/kg | 8260   |
| trans-1,2-Dichloroethene  | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | 2,300              | 30      | mg/kg | 8260   |
| trans-1,3-Dichloropropene | ND         | ND     | ND     | ND      | ND    | ND    | ND    | 0.011     | n/a                | 18      | mg/kg | 8260   |

# Memorandum 3 November 2015 Page 22

n/a - No applicable limit for analyte.

ND – Analyte not detected.

- <sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.
- b November 2014 EPA Regional Screening Level (RSL) Summary Table industrial soil screening levels with a Target Hazard Quotient of 0.1. c Nonwastewater Universal Treatment Standard. See 40 CFR § 268.48.
- <sup>d</sup> Screening level is for each analyte.

**Table 13. Summary of Total Volatile Organic Compound Results – Liquid Samples** 

| Table 13. Summary of Total Volatile Organic Compound Results – Liquid Samples |      |       |           |       |       |           |       |       |        |  |  |  |
|-------------------------------------------------------------------------------|------|-------|-----------|-------|-------|-----------|-------|-------|--------|--|--|--|
|                                                                               |      |       | Sample ID | ı     |       | Reporting |       |       |        |  |  |  |
| Analyte                                                                       | SP-6 | SP-11 | SP-12     | SP-14 | SP-15 | Limita    | WUTSb | Units | Method |  |  |  |
| 1,1,1,2-Tetrachloroethane                                                     | ND   | ND    | ND        | ND    | ND    | 0.001     | 57    | μg/L  | 8260   |  |  |  |
| 1,1,1-Trichloroethane                                                         | ND   | ND    | ND        | ND    | ND    | 0.0005    | 54    | μg/L  | 8260   |  |  |  |
| 1,1,2,2-Tetrachloroethane                                                     | ND   | ND    | ND        | ND    | ND    | 0.0005    | 57    | μg/L  | 8260   |  |  |  |
| 1,1,2-Trichloroethane                                                         | ND   | ND    | ND        | ND    | ND    | 0.0005    | 54    | μg/L  | 8260   |  |  |  |
| 1,1,2-Trichlorotrifluoroethane                                                | ND   | ND    | ND        | ND    | ND    | 0.001     | 57    | μg/L  | 8260   |  |  |  |
| 1,1-Dichloroethane                                                            | ND   | ND    | ND        | ND    | ND    | 0.0005    | 59    | μg/L  | 8260   |  |  |  |
| 1,1-Dichloroethene                                                            | ND   | ND    | ND        | ND    | ND    | 0.0005    | 25    | μg/L  | 8260   |  |  |  |
| 1,1-Dichloropropene                                                           | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 1,2,3-Trichlorobenzene                                                        | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 1,2,3-Trichloropropane                                                        | ND   | ND    | ND        | ND    | ND    | 0.001     | 850   | μg/L  | 8260   |  |  |  |
| 1,2,3-Trimethylbenzene                                                        | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 1,2,4-Trichlorobenzene                                                        | ND   | ND    | ND        | ND    | ND    | 0.005     | 55    | μg/L  | 8260   |  |  |  |
| 1,2,4-Trimethylbenzene                                                        | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 1,2-Dibromo-3-chloropropane                                                   | ND   | ND    | ND        | ND    | ND    | 0.001     | 110   | μg/L  | 8260   |  |  |  |
| 1,2-Dibromoethane (EDB)                                                       | ND   | ND    | ND        | ND    | ND    | 0.002     | 28    | μg/L  | 8260   |  |  |  |
| 1,2-Dichlorobenzene                                                           | ND   | ND    | ND        | ND    | ND    | 0.001     | 88    | μg/L  | 8260   |  |  |  |
| 1,2-Dichloroethane                                                            | ND   | ND    | ND        | ND    | ND    | 0.0005    | 210   | μg/L  | 8260   |  |  |  |
| 1,2-Dichloroethene (Total)                                                    | ND   | ND    | ND        | ND    | ND    | 0.0005    | n/a   | μg/L  | 8260   |  |  |  |
| 1,2-Dichloropropane                                                           | ND   | ND    | ND        | ND    | ND    | 0.002     | 850   | μg/L  | 8260   |  |  |  |
| 1,3,5-Trimethylbenzene                                                        | ND   | ND    | ND        | ND    | ND    | 0.0005    | n/a   | μg/L  | 8260   |  |  |  |
| 1,3-Butadiene                                                                 | ND   | ND    | ND        | ND    | ND    | 0.01      | n/a   | μg/L  | 8260   |  |  |  |
| 1,3-Dichlorobenzene                                                           | ND   | ND    | ND        | ND    | ND    | 0.0005    | 36    | μg/L  | 8260   |  |  |  |
| 1,3-Dichloropropane                                                           | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 1,4-Dichlorobenzene                                                           | ND   | ND    | ND        | ND    | ND    | 0.0005    | 90    | μg/L  | 8260   |  |  |  |
| 2,2-Dichloropropane                                                           | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 2-Butanone (MEK)                                                              | ND   | ND    | ND        | ND    | ND    | 0.002     | 280   | μg/L  | 8260   |  |  |  |
| 2-Chlorotoluene                                                               | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 2-Hexanone                                                                    | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| 2-Methyl-1,3-butadiene                                                        | ND   | ND    | ND        | ND    | ND    | 0.01      | n/a   | μg/L  | 8260   |  |  |  |
| 2-Methylpentane                                                               | ND   | ND    | ND        | ND    | ND    | 0.005     | n/a   | μg/L  | 8260   |  |  |  |
| 2-Propanol                                                                    | ND   | ND    | ND        | ND    | ND    | 0.2       | n/a   | μg/L  | 8260   |  |  |  |
| 3-Methylpentane                                                               | ND   | ND    | ND        | ND    | ND    | 0.005     | n/a   | μg/L  | 8260   |  |  |  |
| 4-Chlorotoluene                                                               | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| Acetone                                                                       | ND   | ND    | ND        | ND    | ND    | 0.004     | 280   | μg/L  | 8260   |  |  |  |
| Acetonitrile                                                                  | ND   | ND    | ND        | ND    | ND    | 0.02      | 5600  | μg/L  | 8260   |  |  |  |
| Acrylonitrile                                                                 | ND   | ND    | ND        | ND    | ND    | 0.004     | 240   | μg/L  | 8260   |  |  |  |
| Benzene                                                                       | ND   | ND    | ND        | ND    | ND    | 0.0005    | 140   | μg/L  | 8260   |  |  |  |
| Bromobenzene                                                                  | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| Bromochloromethane                                                            | ND   | ND    | ND        | ND    | ND    | 0.001     | n/a   | μg/L  | 8260   |  |  |  |
| Bromodichloromethane                                                          | ND   | ND    | ND        | ND    | ND    | 0.0005    | 350   | μg/L  | 8260   |  |  |  |
| Bromoform                                                                     | ND   | ND    | ND        | ND    | ND    | 0.0005    | 630   | μg/L  | 8260   |  |  |  |
| Bromomethane                                                                  | ND   | ND    | ND        | ND    | ND    | 0.0005    | 110   | μg/L  | 8260   |  |  |  |
| Carbon disulfide c                                                            | ND   | ND    | ND        | ND    | ND    | 0.001     | 3800  | μg/L  | 8260   |  |  |  |

**Table 13. Summary of Total Volatile Organic Compound Results – Liquid Samples** 

| 1 able 13. Summar                     | <i>y</i> |          |           |       | mpour    | Ta Tesares | Diqui |       | oles - |
|---------------------------------------|----------|----------|-----------|-------|----------|------------|-------|-------|--------|
|                                       |          | <u>;</u> | Sample ID | V     | <b>I</b> | Reporting  |       |       |        |
| Analyte                               | SP-6     | SP-11    | SP-12     | SP-14 | SP-15    | Limita     | WUTSb | Units | Method |
| Carbon tetrachloride                  | ND       | ND       | ND        | ND    | ND       | 0.0005     | 57    | μg/L  | 8260   |
| Chlorobenzene                         | ND       | ND       | ND        | ND    | ND       | 0.0005     | 57    | μg/L  | 8260   |
| Chloroethane                          | ND       | ND       | ND        | ND    | ND       | 0.0005     | 270   | μg/L  | 8260   |
| Chloroform                            | ND       | ND       | ND        | ND    | ND       | 0.0005     | 46    | μg/L  | 8260   |
| Chloromethane                         | ND       | ND       | ND        | ND    | ND       | 0.0005     | 190   | μg/L  | 8260   |
| Chloroprene                           | ND       | ND       | ND        | ND    | ND       | 0.001      | 57    | μg/L  | 8260   |
| Cyclohexane                           | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| Dibromochloromethane                  | ND       | ND       | ND        | ND    | ND       | 0.0005     | 57    | μg/L  | 8260   |
| Dibromomethane                        | ND       | ND       | ND        | ND    | ND       | 0.001      | 110   | μg/L  | 8260   |
| Dichlorodifluoromethane               | ND       | ND       | ND        | ND    | ND       | 0.001      | 230   | μg/L  | 8260   |
| Ethanol                               | ND       | ND       | ND        | ND    | ND       | 0.5        | n/a   | μg/L  | 8260   |
| Ethyl methacrylate                    | ND       | ND       | ND        | ND    | ND       | 0.002      | 140   | μg/L  | 8260   |
| Ethylbenzene                          | ND       | ND       | ND        | ND    | ND       | 0.0005     | 57    | μg/L  | 8260   |
| Hexachloro-1,3-butadiene <sup>c</sup> | ND       | ND       | ND        | ND    | ND       | 0.001      | 55    | μg/L  | 8260   |
| Isopentane                            | ND       | ND       | ND        | ND    | ND       | 0.005      | n/a   | μg/L  | 8260   |
| Isopropylbenzene (Cumene)             | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| Methacrylonitrile                     | ND       | ND       | ND        | ND    | ND       | 0.02       | 240   | μg/L  | 8260   |
| Methyl acetate                        | ND       | ND       | ND        | ND    | ND       | 0.002      | n/a   | μg/L  | 8260   |
| Methyl methacrylate                   | ND       | ND       | ND        | ND    | ND       | 0.002      | 140   | μg/L  | 8260   |
| Methyl-tert-butyl ether               | ND       | ND       | ND        | ND    | ND       | 0.0005     | n/a   | μg/L  | 8260   |
| Methylcyclohexane                     | ND       | ND       | ND        | ND    | ND       | 0.002      | n/a   | μg/L  | 8260   |
| Methylcyclopentane                    | ND       | ND       | ND        | ND    | ND       | 0.005      | n/a   | μg/L  | 8260   |
| Methylene Chloride <sup>d</sup>       | ND       | ND       | ND        | ND    | ND       | 0.0005     | 89    | μg/L  | 8260   |
| Naphthalene                           | ND       | ND       | ND        | ND    | ND       | 0.001      | 59    | μg/L  | 8260   |
| Propionitrile                         | ND       | ND       | ND        | ND    | ND       | 0.016      | 240   | μg/L  | 8260   |
| Styrene                               | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| Tetrachloroethene                     | ND       | ND       | ND        | ND    | ND       | 0.0005     | 56    | μg/L  | 8260   |
| Tetrahydrofuran                       | ND       | ND       | ND        | ND    | ND       | 0.004      | n/a   | μg/L  | 8260   |
| Toluene                               | ND       | ND       | ND        | ND    | ND       | 0.0005     | 80    | μg/L  | 8260   |
| Trichloroethene                       | ND       | ND       | ND        | ND    | ND       | 0.0005     | 54    | μg/L  | 8260   |
| Trichlorofluoromethane                | ND       | ND       | ND        | ND    | ND       | 0.0005     | 20    | μg/L  | 8260   |
| Vinyl chloride                        | ND       | ND       | ND        | ND    | ND       | 0.0005     | 270   | μg/L  | 8260   |
| Xylene (Total)                        | ND       | ND       | ND        | ND    | ND       | 0.003      | 320   | μg/L  | 8260   |
| cis-1,2-Dichloroethene                | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| cis-1,3-Dichloropropene               | ND       | ND       | ND        | ND    | ND       | 0.0005     | 36    | μg/L  | 8260   |
| m&p-Xylene                            | ND       | ND       | ND        | ND    | ND       | 0.002      | n/a   | μg/L  | 8260   |
| n-Butanol                             | ND       | ND       | ND        | ND    | ND       | 0.2        | 5600  | μg/L  | 8260   |
| n-Butylbenzene                        | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| n-Heptane                             | ND       | ND       | ND        | ND    | ND       | 0.005      | n/a   | μg/L  | 8260   |
| n-Hexane                              | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| n-Pentane                             | ND       | ND       | ND        | ND    | ND       | 0.01       | n/a   | μg/L  | 8260   |
| n-Propylbenzene                       | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| o-Xylene                              | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| p-Isopropyltoluene                    | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |
| sec-Butylbenzene                      | ND       | ND       | ND        | ND    | ND       | 0.001      | n/a   | μg/L  | 8260   |

Table 13. Summary of Total Volatile Organic Compound Results – Liquid Samples

|                           |      | , ,   | Sample ID |       | Reporting |        |                   |       |        |
|---------------------------|------|-------|-----------|-------|-----------|--------|-------------------|-------|--------|
| Analyte                   | SP-6 | SP-11 | SP-12     | SP-14 | SP-15     | Limita | WUTS <sup>b</sup> | Units | Method |
| tert-Butyl Alcohol        | ND   | ND    | ND        | ND    | ND        | 0.2    | n/a               | μg/L  | 8260   |
| tert-Butylbenzene         | ND   | ND    | ND        | ND    | ND        | 0.001  | n/a               | μg/L  | 8260   |
| trans-1,2-Dichloroethene  | ND   | ND    | ND        | ND    | ND        | 0.0005 | 54                | μg/L  | 8260   |
| trans-1,3-Dichloropropene | ND   | ND    | ND        | ND    | ND        | 0.0005 | 36                | μg/L  | 8260   |

n/a – No applicable limit for analyte.

**Table 14. Summary of Total Petroleum Hydrocarbon Results – Solid Samples** 

|                         | Sample ID |                              |       |        |
|-------------------------|-----------|------------------------------|-------|--------|
| Analyte                 | SP-13     | Reporting Limit <sup>a</sup> | Units | Method |
| Gasoline Range Organics | ND        | 2,690                        | μg/kg | 8015   |
| Diesel Range Organics c | 723       | 19.8                         | mg/kg | 8015   |
| Oil Range Organics      | 1,270     | 99.1                         | mg/kg | 8015   |

ND – Analyte not detected.

Table 15. Summary of Total Petroleum Hydrocarbon Results-Liquid Samples

|                         |       | Reporting |       |        |       |        |
|-------------------------|-------|-----------|-------|--------|-------|--------|
| Analyte                 | SP-11 | SP-14     | SP-15 | Limita | Units | Method |
| Gasoline Range Organics | ND    | ND        | ND    | 50     | μg/L  | 8015   |
| Diesel Range Organics c | ND    | ND        | 0.43  | 0.25   | mg/L  | 8015   |
| Oil Range Organics      | ND    | ND        | 0.84  | 0.5    | mg/L  | 8015   |

n/a – No applicable limit for analyte.

Table 16. Summary of pH Results – Liquid Samples<sup>a</sup>

| i e     |      | Sample 1 | ID    |       |                              |            |            |
|---------|------|----------|-------|-------|------------------------------|------------|------------|
| Analyte | SP-2 | SP-8     | SP-11 | SP-12 | Reporting Limit <sup>b</sup> | Units      | Method     |
| pН      | 3.6  | 2.4      | 10.3  | 10.4  | 0.010                        | Std. Units | SM 4500 HB |

<sup>&</sup>lt;sup>a</sup> All samples exceeded hold times.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> Wastewater Universal Treatment Standard. See 40 CFR § 268.48.

<sup>&</sup>lt;sup>c</sup> RPD value was outside control limits.

<sup>&</sup>lt;sup>d</sup> Common Laboratory Contaminant.

ND – Analyte not detected.

<sup>&</sup>lt;sup>a</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

<sup>&</sup>lt;sup>b</sup> Wastewater Universal Treatment Standard. See 40 CFR § 268.48.

<sup>&</sup>lt;sup>c</sup> Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample recovery.

<sup>&</sup>lt;sup>b</sup> Maximum reporting limit listed. Some of the samples were analyzed at a lower reporting limit.

**Table 17. Flash Point Results – Liquid Samples** 

|            | Samp  | le ID |                 |       |        |
|------------|-------|-------|-----------------|-------|--------|
| Analyte    | SP-11 | SP-12 | Reporting Limit | Units | Method |
| Flashpoint | >212  | >212  | 75.0            | deg F | 1010   |

# Attachment A

# PHOTOGRAPH LOG

TAKEN BY: J. Watson

SITE LOCATION: 90 day storage area, Tank 68

PHOTO #: 1

COMMENTS: SP-1

Chris Krejci collecting an EnCore sample of the Tank 68 grit stored in a roll-off bin in the 90 day storage area at the Wilmington Refinery.

**DATE TAKEN:** 8/27/2015

TAKEN BY: J. Watson

**PHOTO** #: 2

COMMENTS: SP-2

Chris Krejci collecting a liquid sample directly into the sample containers beneath the roll-off bin in the Selenium Plant area of the Wilmington Refinery.



SITE LOCATION: Selenium roll off area

**DATE TAKEN:** 8/27/2015

**TAKEN BY:** C. Krejci SITE LOCATION: Selenium roll off area

**PHOTO** #: 3

**COMMENTS:** SP-3

John Schofield collecting a solids sample using an extension pole for collection prior to splitting into individual aliquots from the selenium roll off area.



**DATE TAKEN:** 8/27/2015

**TAKEN BY:** J. Schofield **SITE LOCATION:** Northwest corner of Pond SBU-2 (F-7)

**PHOTO #:** 4

COMMENTS: SP-4

Chris Krejci collecting an EnCore sample from the northwest corner of Pond SBU-2 (F-7).



DATE TAKEN: 8/27/2015

TAKEN BY: C. Krejci

SITE LOCATION: Southwest Corner of SBU-2 (F-7)

PHOTO #: 5

COMMENTS: SP-5

Solids collected from southwest corner of Pond SBU-2 (F-7).



**DATE TAKEN:** 8/27/2015

TAKEN BY: J. Watson

**PHOTO #:** 7

**COMMENTS:** SP-8

Chris Krejci collecting a liquid sample directly into the sample container from water inside a secondary containment wall in the selenium plant. Due to low water levels, a stainless steel trowel was used to push liquid into the sample bottles.





**DATE TAKEN:** 8/27/2015

TAKEN BY: J. Watson SITE LOCATION: Shaker building

**PHOTO** #: 8

COMMENTS: SP-9, SP-10

Site personnel collecting petroleum coke from shaker using a scoop; Chris Krejci collecting from the scoop using a stainless steel spoon and placing the sample into sample containers.



**DATE TAKEN:** 8/28/2015

TAKEN BY: J. Watson SITE LOCATION: Pond water outfall

**PHOTO** #: 9

COMMENTS: SP-11, SP-12

Chris Krejci measuring the pH of the pond water outfall



**DATE TAKEN:** 8/28/2015

TAKEN BY: J. Watson SITE LOCATION: Pond water outfall

**PHOTO** #: 10

**COMMENTS:** SP-13

Sediment collected under the pond

outfall.



# Attachment B QUALITY ASSURANCE/QUALITY CONTROL DISCUSSION

Pace Analytical was selected as the laboratory for these analyses because it operates NELAC certified laboratories for the selected EPA-approved methods used in this sampling episode.

For this sampling episode, ERG followed all Quality Assurance Project Plan sampling requirements.

#### Sample Receipt Condition

All samples were received in accordance with EPA protocol with one exception: routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits for SP-9, and SP-10.

#### **Holding Times**

All holding times were met with the following exceptions:

- Sample was received for analysis requested beyond the recognized method holding time for SP-2 and SP-8;
- EnCore samples were outside of the holding period.
- Analysis initiated outside of the 15 minute EPA recommended holding time for pH for SP-2 and SP-8.
- Sample was received or analysis requested beyond the recognized method holding time for SP-11 and SP-12.
- Analysis initiated outside of the 15 minute EPA recommended holding time for pH SP-11 and SP-12.

#### **Laboratory Control Samples**

All analytes measured in the method blanks were below the reporting limit other than the following:

- Calcium was detected in the associated method blank. (Lab ID: 153272)
- Mercury was detected in the associated method blank. (Lab ID: 153272)

## Matrix Spikes and Duplicates

All percent recoveries and RPDs were within acceptance criteria except for the following:

#### TCLP Metal Analyses

• Matrix spike recovery exceeded QC limits for Calcium and Thallium. Batch accepted based on laboratory control sample (LCS) recovery.

#### TOTAL METALS

- Matrix spike recovery exceeded QC limits for the following analytes:
  - o Aluminum
  - Antimony
  - o Barium
  - o Calcium
  - o Iron
  - o Lead
  - o Magnesium
  - o Manganese
  - o Potassium
  - Thallium

#### DRO ORO ORGANIC

- Surrogate recovery outside laboratory control limits included:
  - o o-Terphenyl (S)
  - o n-Pentacosane (S)
- Surrogate recovery outside control limits due to matrix interferences (not confirmed by reanalysis):
  - o n-Pentacosane (S)
- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery:
  - o Diesel Range Organic (C10-C28)
- RPD value was outside control limits:
  - o Diesel Range Organic (C10-C28)

#### 7471 MERCURY

- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - o Mercury

#### MSSV SEMIVOLATILES

- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - Hexachlorocyclopentadiene

#### TCLP CLLE

- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery
  - o Pyridine
- RPD value was outside control limits
  - o 2,4,5-Trichlorophenol

#### MSV 5035 LOW LEVEL RESULTS

- Surrogate recovery outside laboratory control limits.
  - o 4-Bromofluorobenzene (S)
  - o Toluene-d8 (S)
- Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
  - o Dibromofluoromethane (S)
  - o Toluene-d8 (S)
  - o SP-9 (Lab ID: 2024867009)
  - o 4-Bromofluorobenzene (S)
  - o Dibromofluoromethane (S)
  - o Toluene-d8 (S)

 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

| 1,1,1,2-Tetrachloroethane       | 1,3-Dichlorobenzene  | Chloroprene                  | n-Butylbenzene                |
|---------------------------------|----------------------|------------------------------|-------------------------------|
| 1,1,2,2-Tetrachloroethane       | 1,3-Dichloropropane  | cis-1,2-Dichloroethene       | n-Propylbenzene               |
| 1,1,2-Trichloroethane           | 1,4-Dichlorobenzene  | cis-1,3-Dichloropropene      | o-Xylene                      |
| 1,1-Dichloroethane              | 2-Chlorotoluene      | Dibromochloromethane         | p-Isopropyltoluene            |
| 1,1-Dichloropropene             | 2-Hexanone           | Dibromomethane               | sec-Butylbenzene              |
| 1,2,3-Trichlorobenzene          | 4-Chlorotoluene      | Ethyl methacrylate           | Styrene                       |
| 1,2,3-Trichloropropane          | Benzene              | Ethylbenzene                 | tert-Butylbenzene             |
| 1,2,4-Trichlorobenzene          | Bromobenzene         | Hexachloro-1,3-butadiene     | Tetrachloroethene             |
| 1,2,4-Trimethylbenzene          | Bromochloromethane   | Isopropylbenzene<br>(Cumene) | Toluene                       |
| 1,2-Dibromo-3-<br>chloropropane | Bromodichloromethane | m&p-Xylene                   | trans-1,2-Dichloroethene      |
| 1,2-Dibromoethane (EDB)         | Bromoform            | Methyl methacrylate          | trans-1,3-<br>Dichloropropene |
| 1,2-Dichlorobenzene             | Bromomethane         | Methylene Chloride           | Trichloroethene               |
| 1,2-Dichloroethane              | Carbon disulfide     | MSD (Lab ID: 152150)         | 1,1,1,2-<br>Tetrachloroethane |
| 1,2-Dichloropropane             | Chlorobenzene        | MSD (Lab ID: 152875)         | Dibromomethane                |
| 1,3,5-Trimethylbenzene          | Chloroform           | Naphthalene                  | Hexachloro-1,3-<br>butadiene  |
|                                 |                      |                              | sec-Butylbenzene              |

• RPD value was outside control limits.

| 1,1,2,2-Tetrachloroethane       | Acrylonitrile          | tert-Butylbenzene            |
|---------------------------------|------------------------|------------------------------|
| 1,1,2-Trichloroethane           | Benzene                | Tetrachloroethene            |
| 1,1-Dichloroethane              | Bromodichloromethane   | Tetrahydrofuran              |
| 1,1-Dichloropropene             | Chloroform             | Toluene                      |
| 1,2,3-Trichloropropane          | Chloroprene            | trans-1,2-Dichloroethene     |
| 1,2-Dibromo-3-<br>chloropropane | cis-1,2-Dichloroethene | Trichloroethene              |
| 1,2-Dichloroethane              | Dibromochloromethane   | 1,1,1,2-Tetrachloroethane    |
| 1,2-Dichloropropane             | Methyl acetate         | Acetone                      |
| Acetonitrile                    | Methyl methacrylate    | Isopropylbenzene<br>(Cumene) |

#### MSV LOW LEVEL RESULTS

- RPD value was outside control limits
  - o Carbon disulfide
  - o Hexachloro-1,3-butadiene
- Common Laboratory Contaminant
  - o Methylene Chloride

#### MSV TCLP RESULTS

- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - o 2-Butanone (MEK)

o Benzene

#### **MET ICPMS RESULTS**

- Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - o Barium
  - o Iron
  - o Magnesium
  - o Manganese
  - o Copper

## Conclusion

Despite the issues listed above, the analytical data provided by the laboratory are acceptable for use in this report based on ERG's review.

# Attachment C CHAIN-OF-CUSTODY FORMS

Section B

# CHAIN-OF-CUSTODY / Analytical F The Chain-of-Custody is a LEGAL DOCUMENT. All rel

WO#: 2024867

2024857

| Company            | Eastern Research Group Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Report To: y                     |                            |              |               |                                         |                           |               |               |             | torma         | tion:    | v        |         |              |                         | ٠,           | .02          | 100           | ,           |             |                      |                |                           |                         |                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|--------------|---------------|-----------------------------------------|---------------------------|---------------|---------------|-------------|---------------|----------|----------|---------|--------------|-------------------------|--------------|--------------|---------------|-------------|-------------|----------------------|----------------|---------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
| Address:           | 141 S. Rolling Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copy To:                         | valsor                     | n, Joe       |               |                                         |                           |               | Atten         |             |               |          |          |         |              |                         |              |              |               |             |             | _                    |                |                           |                         |                                                                                                                |
| -                  | Id, PA 19064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | оору 10:                         |                            |              |               |                                         |                           |               | ĺ             |             | Name:         |          |          |         |              |                         |              |              |               |             |             |                      |                |                           |                         |                                                                                                                |
| Springhe<br>Email: | 10, FA 13004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Purchase Ords                    | - 4.                       |              |               |                                         |                           |               | Addre         |             |               |          |          |         |              |                         |              |              |               |             |             |                      |                | Re                        | gulat                   | tory Agency                                                                                                    |
| Phone:             | 70-633-1637 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purchase Ords                    |                            |              |               |                                         |                           |               |               | Quot        | _             |          |          |         |              |                         |              |              |               |             |             |                      | :              | -                         |                         |                                                                                                                |
|                    | ed Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Name:                    | <u> </u>                   | J.S. EPA Lo  | ng Beach,     | CA G/D/0                                | <u> </u>                  |               |               |             | ect Mai       | nager    | : (      | eraig.n | nocalk       | um@p                    | pacela       | abs.co       | m,            |             |             |                      |                |                           | State                   | Location                                                                                                       |
| Kedness            | ed Due Late:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project #:                       |                            |              |               |                                         |                           |               | Page          | Profi       | ile#;         | 569      | 9        |         |              | - V.                    |              |              |               |             |             |                      |                |                           | Name and Address of the | CA                                                                                                             |
| <del>,</del>       | the same of the sa |                                  |                            |              |               |                                         |                           |               |               |             |               |          |          |         | ,            | 333                     | 11.6         | Re           | guesi         | ed Acat     | vais F      | illered              | Y/N)           | ALTERNATION OF THE PARTY. | 100                     |                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | € la                       | -            |               |                                         |                           |               |               |             |               |          |          |         |              | 100                     |              |              | T             |             |             |                      | 1              |                           |                         |                                                                                                                |
| -                  | the second secon |                                  | odes to lef                | 1            | COLL          | ECTED                                   |                           |               |               |             | ъ.            |          |          |         |              | ₩,                      |              |              |               | W. W.       |             | 图                    |                |                           |                         |                                                                                                                |
|                    | MATRIX<br>Drinking V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CODE                             | ខ្ម 🖁                      | ₹ ├──        | COLL          | T                                       |                           | 중             | 1 -           |             | P             | rese     | vativ    | es      |              | 300                     | ш            | _            | -             | - 6         | _           | PUT.                 |                |                           |                         |                                                                                                                |
|                    | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WT                               |                            |              |               | l                                       |                           | ECTION        |               |             | - 1           | 1        | ΙI       | - 1     |              | 9256                    |              |              |               | 1           |             | 0                    |                |                           |                         |                                                                                                                |
| 1 1                | Wester Wa<br>Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iter WW                          | Mag   Mag                  | Ē  ·         |               |                                         |                           | 曹             | 1.1           | ŀ           | - 1           |          | ΙI       |         |              |                         | 1            |              |               | 129         | 2/1/2       |                      | .              | - 1                       | ΙzΙ                     | la de la companya de |
|                    | SAMPLE D soursoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | (See valid o               | Ε            | ART           |                                         | ND                        | 8             |               | ı           | - 1           |          | ΙI       |         |              | Test                    | 1            |              | ٦             | J81.        | - #-        | ∛⊠                   | 11             | - 1                       | Ê.                      |                                                                                                                |
| 1                  | One Character per box. Wee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LMD                              | - I                        | _            | ARI           |                                         | NU.                       | ΑŢ            | 83            |             | ļ             | 1        | 1 1      |         | 1            |                         | اها          | e r          | Ŋĸ_           | ) <b>3</b>  | M           | 13                   | 1 -1           |                           | 8                       |                                                                                                                |
|                    | (A.Z 0.9/ ). Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AR T                             | MATRIX CODE<br>SAMPLE TYPE | 2            | 1             | 1                                       |                           | FEMP          | CONTAINERS    | g           | ı             | 1        | H        |         | 1            | 3                       | TPH DRO/ORO  | Gesoline     | 35            |             | 3 6         |                      | H              |                           | S.                      | ĺ                                                                                                              |
| *                  | Sample lds must be unique Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OT TS                            | 9 [5                       |              |               | ļ                                       |                           | Ē.            | ž             | Š           |               |          | ΙI       | 813     | 5            | 2                       | ġ.           | <u>ا</u> ق ا |               | J 9         | -96         | 3                    | <del>*</del> ! | . [ _ '                   | 2                       |                                                                                                                |
| ITEM               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 원니로                        | 3 .          | -             |                                         |                           | 7             | 8             | § 3         | ₫ g           |          | ᄩ        | 8 18    | ا≣ا          | Analy                   | ä            | 8 4          | 1/6           | ಇ.ನ         | 4           | 1.04                 | <del>}</del>   | - 1                       | Iã!                     |                                                                                                                |
| =                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | MATRIX                     | DATE         | TIME          | DATE                                    | TIME                      | SAM           | ÷.            | Unpreserved | H2SO4<br>HN03 | 모        | NeoH     | Ma2S203 | Other        | 13                      | 힐            | Ē.           | স্ব           | <b>4</b> 5  |             | 763                  | 1 1            |                           | Residual                |                                                                                                                |
| 200                | 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | <del></del>                |              | T             | WATE                                    | 11000                     |               |               |             | - 1-7         | +=       | -        | -+-     | +-           | 1800 (6)                | -            | -            | <del>"</del>  | ++          |             |                      | -+-            |                           |                         |                                                                                                                |
| 1                  | 21~1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 4                          | 2 8/2        | LOTE          | 5                                       |                           | G,            | М,            | N           | 1             |          |          |         |              | 1                       | l'           | ١l٠          | Νì            | /  v        | VV          | 4.4                  |                |                           | П                       | Conductmen                                                                                                     |
|                    | 60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | MZ                         | = 1          |               |                                         |                           | 1             | 3             |             |               | <b>*</b> | 1-1      | _       | 1-           | 1                       | $\vdash$     | - 1          | 4 1           |             | <del></del> | * <del> *** </del> - | <del></del>    | +-                        | 1 1                     | TOWN THREE TO                                                                                                  |
| 2                  | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | _                          | শী ধ         | 112           | ۷                                       |                           | 100           | 2             | V           | _ V           | 1        |          |         |              |                         | l I          |              |               | W           | -           | WN                   | /              |                           | 1 1                     | emy mil partials                                                                                               |
|                    | C0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                | 시(                         | , 1c         | A-18          | 45                                      |                           | 7             | 2             |             |               | Т        | П        |         |              | 1                       | П            |              |               | £           |             | 1.71                 | $\Box$         | _                         | 11                      |                                                                                                                |
|                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 41                         | 71           | 10.03         | 1)                                      |                           |               |               | 10          |               | _        | Ш        |         | $\perp$      | 1                       |              |              | $\perp$       | V           |             | ₩                    |                | -                         | E A                     | analyne                                                                                                        |
| Code .             | CO - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | <b>X</b> (                 | 7 4          | 14:54         | İ                                       | 1                         | ista<br>R     | 9             | M           | -             |          | 1 1      | .       | - [          |                         |              | ١,           | 1             | 1 1         | ŝ           | â i                  |                |                           | 1 1                     |                                                                                                                |
| - Part 187         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | _                          | -            | _             |                                         | <del></del>               |               | 123           | -+          | -             | +-       | ⊢⊢       | -       | -            | 1                       | ш            | 1            | À 3           | IV          | V V         | 941                  | -1             |                           | 11                      | L                                                                                                              |
|                    | SP-12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | <b>¥</b> I(                |              | 1550 lO       | 1                                       | ļ                         | Page          | q             | V           |               |          | ш        |         | 1            | 1                       | ı            | l ly         | والدر         | A soft      | ايحان.      | the I                | Ιí             | 4                         | 1 1                     |                                                                                                                |
| Par parellan       | Contract of the contract of th |                                  | 7                          |              |               |                                         | +                         | 182           |               | -           | - 1.7         | <i>-</i> | ₩        | -       | <del> </del> | 1                       | Н            |              |               | 3 8         | 4           | 2 80 m               | -              | +                         | 11                      |                                                                                                                |
| 1.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                | ٩C                         | <b>3</b> 11  | 157:31        |                                         |                           | ٠,٠           | $\mathcal{L}$ | V,          | V             |          | ш        |         | -[-          | 1                       | 1            |              | v.            | / 🗤         | 1           | . 1                  | 1.             |                           | 1                       |                                                                                                                |
|                    | CD 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                | بالغ                       | n 10         | 9-3-30        | }                                       |                           | 500           | 9             | 1           |               |          | $\vdash$ |         |              | 1 .                     |              |              | . 15          | 1           |             |                      | +              | +                         | 1                       |                                                                                                                |
| 7.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 74                         | <u> </u>     | \$ 600        | ₽                                       |                           | ing.          |               | 6           |               | ㅗ        |          |         |              |                         | Ш            | [            | M١            | M           | W           | 11                   |                |                           | 1 1                     | 1                                                                                                              |
|                    | co o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | W                          | 2 .          | 19:31         | 1                                       |                           | And<br>Market | 2             | W.          | ./            | /        |          | -1-     | $\top$       | 7                       | П            | $\neg$       | $\neg \vdash$ | . 1         | 1           | V                    | 9              |                           | 11                      |                                                                                                                |
| 2.3                | 31-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                            | 7 "          |               |                                         | -                         |               | 00            | 17-         | - 81          | +        | $\vdash$ | +       | +            | 1                       | Ш            | -            |               | N           | -           | VX                   | # L.           | $\perp$                   | JI                      | 90                                                                                                             |
|                    | 50-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | كالأ                       | - 1/         | 19:0          | 0                                       | 1 1                       | 4             | 41            | V           |               | 1        | 1 1      |         | -            | 1                       |              | 2.15         | V۱            | 1Uh         | JN          | //. //               | 1.1            | -1-7                      | 11                      |                                                                                                                |
|                    | - E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                | 7                          |              |               |                                         |                           |               |               | . A         | +             | +        | +        | ┿       | -            | 1                       | $\vdash$     | -13          | W   3         | 161         | 4 17        | Y Y I                |                | +                         | 1 F                     |                                                                                                                |
| 10                 | 128-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Į.                               | U(                         | 2. 5         | 19.10         | ) *                                     | ł l                       | e)            | 71            | ٧           |               | 1        | 1 1      |         | 1            |                         | H            | 1.           | IJ١           | AM:         | दर्श व      | M/T                  |                |                           | 1                       |                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | $\top$                     | -            | T             |                                         |                           |               | <b>-</b> 1-   | $\neg$      |               | 7        |          |         | +-           | 1 1                     |              | _            | *             | 1~1         | ×4 .        | +                    |                | +                         | 1 F                     |                                                                                                                |
| 11                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                            | 4            |               |                                         |                           |               |               | .           |               |          |          |         |              | Li                      | ı            |              |               |             | - [         |                      | 1 I            |                           | 1.1                     |                                                                                                                |
| 12.0               | *5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | Т                          |              |               |                                         |                           |               |               | T           |               |          |          | $\top$  | Т            | 1 1                     | П            | $\neg$       | $\top$        |             |             |                      |                | $\vdash$                  | 1 1                     |                                                                                                                |
| 12                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charles and State of the Control | Historia                   |              |               |                                         | 2000                      |               | للل           |             |               |          |          |         |              |                         | Ш            |              |               |             |             |                      |                |                           |                         |                                                                                                                |
| 100                | ADDITIONAL COMMENTS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i ii                             | LINGU                      | ASRED BY     | AFFRIAM       | ON:                                     | DATE                      |               |               | IME         |               |          |          | CCEP    | TEDB         | YJAF                    | FILIAT       | ica          |               |             | DAT         |                      | TIME           | 4                         |                         | SAMPLE COMPRISONS                                                                                              |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /\.                              | nel mercio                 | a ir r       | المسيعا       | - 1000 CO                               |                           | 1             | 200,00        | deres.      | 7             |          | 200      | 10      | -            | 10000<br>10000<br>10000 | District Co. | _            | A SERVICE     |             |             |                      |                | 2 C. S.                   | 18.2                    |                                                                                                                |
| <u> </u>           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                | 236                        | mw           | war           | · 6                                     | 8128                      | 15            | (2            | 5           | VI '          | 7        | 838      | F.,     | -6           | 1.50                    | 1            | ac.          | el:           | ab) [3      | 1/2         | 122                  | 0:51           | ΔL                        |                         | n   n                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المواج                           | X                          | A L          | 200           | 1 .L-                                   | 8/13                      | 1.            | 4             | S)          |               | V        | G        | 1 8     | -            |                         |              | 40.          | ,             |             |             |                      | er at at 5     | ~                         |                         |                                                                                                                |
| 7-                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                              | <u> </u>                   | CIPER I      | are !         | -0D)                                    | 100                       | UŞ.           |               |             | +             |          | 1        | المح    | = 7          | -                       |              |              |               |             | - 4         |                      |                | l.                        | ٠٩                      | I A L                                                                                                          |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Τ.                               | 1                          | 6            | EX.           |                                         | Qlo al                    | PAREN         | 4             | 20          |               | 1        | ~        | 1       | しい           |                         |              | upan.        | **            | . 9         | 7<br>7 2 m  | 150                  | 120            | ١,                        | 9                       | 1/16/11                                                                                                        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            |              |               |                                         | 9-7                       | 9             | F.            |             | +             | (-       | _        | >\$     |              | _                       |              |              |               | 16          | 100         | 7/5                  | 1883           | _                         | -51                     | VXIVI                                                                                                          |
| . L                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            | $T:=\{\{z\}$ |               |                                         | L                         | [             |               |             |               | _        | -        |         |              |                         |              |              |               | : ["        |             |                      |                | 12                        | 2                       | * U   #V/                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                |                            |              | SAMPLE        | RNAME                                   | AND SIGN                  | ÁTI           | RE            |             |               |          |          | 1,121   | 1            |                         | 0 × 10       | 300          |               | W. S.       | (Trail      | t i                  | 200            | 4                         | $\neg$                  | V 1 V 1/V                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            |              | VICINIO 1600. | 000000000000000000000000000000000000000 | The state of the state of | 1000          |               | THE C       | 223120        | 把抽象      |          | 249.00  | o diago      | a ala                   | (100m)       | -01-75       | 86 X          | September 1 | 5           | 4 Late               | BOX 30         | ر الق                     | , 1                     | 8                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ٠                          |              | PRII          | NT NAME                                 | of SAMPL                  | EK:           |               |             |               |          |          |         |              |                         |              | -            |               |             |             |                      |                |                           | i 11                    | 3 2 1 1                                                                                                        |
| · ag               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            |              | SIG           | NATURE                                  | of SAMPL                  | ER:           |               |             |               | _        | <u> </u> |         |              |                         |              | ATE S        | Ti energy     | de          |             |                      |                | - 8                       | : I                     | Received Secretived Secretived Secretived Society VIN) Semples Secretived VIN)                                 |
| O O                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                            |              | 1             |                                         | - Grant E                 |               |               |             |               |          |          |         |              | 1                       | U            | AIE S        | » gne         | u.          |             |                      |                | 1 100                     | ) I                     | Secet<br>Ym)<br>Ym)<br>Ym)<br>Ym)<br>Ym)<br>Ym)                                                                |



# CHAIN-OF-CUSTODY / Analytical Request Do The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must (

WO#: 2024937 \$1.0.0 \ **0.0.1** \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1.0.0 \ \$1

| Section A Section B                                                                                                     |                                                                                                         |                                  |                                              |          |              |             | Section C 20249 |                           |                                                                |               |               |         |                |                     |          |               |             |                                   |                            | 24937          |               |                          |                   |                |              |                         |                |                         |           |                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|----------|--------------|-------------|-----------------|---------------------------|----------------------------------------------------------------|---------------|---------------|---------|----------------|---------------------|----------|---------------|-------------|-----------------------------------|----------------------------|----------------|---------------|--------------------------|-------------------|----------------|--------------|-------------------------|----------------|-------------------------|-----------|----------------|--|--|--|
| Required Client Information: Required Project Information:  Company: Eastern Research Group Inc. Report To: Watson, Joe |                                                                                                         |                                  |                                              |          |              |             |                 | Invoice information:      |                                                                |               |               |         |                |                     |          |               |             |                                   |                            |                |               | ٠.                       |                   |                | ge:          | 1                       |                | JT                      | 1 1       |                |  |  |  |
|                                                                                                                         |                                                                                                         |                                  |                                              |          |              |             |                 |                           |                                                                |               | Attention:    |         |                |                     |          |               |             |                                   |                            |                |               |                          |                   |                |              |                         |                |                         |           |                |  |  |  |
| Address:                                                                                                                | 141 S. Rolling Road                                                                                     | Copy To:                         | ру То:                                       |          |              |             |                 |                           |                                                                | Company Name: |               |         |                |                     |          |               |             |                                   |                            |                |               |                          |                   |                |              |                         |                |                         |           |                |  |  |  |
|                                                                                                                         | s, PA 19064                                                                                             |                                  |                                              |          |              |             |                 |                           | Address                                                        |               |               |         |                |                     |          |               |             |                                   |                            |                |               |                          | Regulatory Agency |                |              |                         |                |                         |           |                |  |  |  |
| Email:                                                                                                                  | 703-633-1637) Pax                                                                                       | Purchase Ord                     | uchase Order#:                               |          |              |             |                 |                           | Pace Quote: Pace Project Manager: craig modollum@pacelabs.com, |               |               |         |                |                     |          |               |             |                                   |                            |                |               |                          |                   |                |              |                         |                |                         |           |                |  |  |  |
| Phone:                                                                                                                  |                                                                                                         | Project Name<br>Project #:       | U.                                           | S. EPA L | ong Beach,   | CA          |                 |                           |                                                                |               |               |         |                |                     |          |               | acelat      | os.con                            | η,                         |                |               | 200                      |                   | eun            | gg dai       | State                   |                | ion                     | a bearing |                |  |  |  |
| roednesse                                                                                                               | d Due Date: 9/11/5                                                                                      | Project w:                       |                                              |          |              | _           |                 | _                         | Pace                                                           | Prof          | ne w          | 569     | 9              |                     | <u> </u> | 000797        | erenen e    | 0192010                           | 01000186                   | DOMESTIC       | SHIPTINGS.    | 52273500                 | along water       | x-000000       | STREET, SEC. | 1400 HOUSE              | CA             | -                       |           |                |  |  |  |
|                                                                                                                         | MATRIX<br>Orniking VI<br>Vivider<br>Watter Vivide<br>Product                                            | WT .                             | (see valid codes to left)<br>(G=GRAB_C=COMP) |          | сош          | ECTED       |                 | LLECTION                  |                                                                |               | P             | reser   | vativ          | es                  |          | N/A           | _           | ١.                                | Y                          | 7              | Т             | filters<br>1             |                   | Market S       |              | A (N                    |                |                         |           |                |  |  |  |
| ITEM#                                                                                                                   | SAMPLE ID  One Character per box. (A-Z, 0-9 /, -)  Sample ids must be unique  Sample ids must be unique | BL<br>OL<br>WP<br>AR<br>OT<br>TS | MATRIX CODE (see v<br>SAMPLE TYPE (G=G       | s        | TART         | DATE        | YIME            | BAMPLE TEMP AT COLLECTION | # OF CONTAINERS                                                | Unpreserved   | H2SO4<br>HN03 | HCI     | NaOH           | Na2S203<br>Methanol | Other    | Analyses Test | VOC by 8260 | TCLP-VOC,SVOC,Metalis(* SVOC 8220 | pH by 9040/Flash Point 101 | Metals by 6020 | SVOC 8270     | TCLP-VOC, SVOC, Metals ( | VOC               | pH Soil - 9045 | a            | Residual Chlorine (YNV) |                |                         |           |                |  |  |  |
|                                                                                                                         | 5P-11                                                                                                   |                                  | 10                                           | 85/28    | 09:13        |             | 6               | 16                        | i) d                                                           | - 1           | $\top$        | , ,     |                |                     |          |               | 1           | И.                                | /1/                        |                |               | $\top$                   | $\top$            |                | ╗            | 1                       | in.            | 4                       | ۵.        | -1-            |  |  |  |
| C PLOCASISAN<br>BURGER BURGER<br>BURGER BURGER                                                                          | 50 11                                                                                                   |                                  | -15                                          | 1-2      | + -          |             |                 |                           | Щ                                                              | 4             |               | 1       | <del>   </del> | +                   | ╀        | 1             | -           | -                                 | 4                          | 14             | $\dashv$      | +                        | +                 | Н              | V            | 4                       | 114            | greary.                 | 47        | ∞ আ'           |  |  |  |
| 2                                                                                                                       | 26-17                                                                                                   |                                  | _ [0                                         | , , (    | 09:40        |             | Q.              | N.                        | 15                                                             | V             | : [,          | /レ      | ľΙ             |                     | 11       | Ш             | 4           | ∠ ~                               | / J                        | 1~1            | - 1           | ı                        |                   | П              |              | -                       | 10             | retei                   | <br>      | elust.         |  |  |  |
|                                                                                                                         | 58-13                                                                                                   |                                  | G                                            | 32 50    | 1            |             | T .             | 64                        | 5                                                              | フ             | $\top$        | , :     | П              |                     | П        | 1             | . J.        | 70                                | ,                          | 3              | 7             | V                        | $\top$            | П              | V            | .,                      |                |                         |           | 7.             |  |  |  |
| State Conce                                                                                                             | -0-41                                                                                                   |                                  | _                                            |          | $+l\sigma J$ | 3           |                 | IV.                       | 킛                                                              | $\dashv$      | ۱,            | 7 -     | $\vdash$       | +                   | +        |               | ۷.          | -                                 | +                          | 1              |               | <b>y</b>                 | +                 | ⊢              | -            | 4                       | <u> </u>       |                         |           | -              |  |  |  |
| 4                                                                                                                       | SP-14                                                                                                   | . Spectron                       | l l@                                         | ۱ ا      | 1046         | ]           | 1               | My                        | 14                                                             | М             | -             | 1√      | 1              |                     | 11       | H             | V           | ١,                                | 4                          | 1.1            | - 1           | 1                        | 1                 | H              | $\lambda A$  | √1                      | 1              | 41.                     |           | - 1            |  |  |  |
| 1000                                                                                                                    | 80 6                                                                                                    |                                  | $\neg$                                       | <u> </u> | 137          | V           | !               | 180                       | 10                                                             | 1             |               | 17      | 1              |                     | Н        | Ιİ            |             |                                   | ,                          | 1              | _             |                          | +                 |                |              | 1                       |                |                         |           |                |  |  |  |
| 5                                                                                                                       | 74-12                                                                                                   | -                                | 10                                           | 111      | 120          | 10          | ļ               | 15.                       | 14                                                             | "             | - 2           | T.      | $\vdash$       | +                   | $\vdash$ | Н             | <b>Y</b>    | - "                               | 4                          | 1              | $\rightarrow$ | +                        | +                 |                | ***          | <u>~</u>                | ļ              |                         |           |                |  |  |  |
| 6                                                                                                                       | 4.                                                                                                      |                                  |                                              | 1        |              |             |                 | l                         |                                                                |               |               | 1       |                |                     |          | Ш             |             |                                   |                            | Ш              | 1             |                          |                   | H              |              | -                       | 1              |                         |           | - 1            |  |  |  |
|                                                                                                                         |                                                                                                         |                                  | $\vdash$                                     | 1        |              |             | 1               | $\vdash$                  |                                                                | 7             |               | +       | $\vdash$       | $\top$              | $\vdash$ | П             | $\top$      | $\top$                            | $\top$                     | H              | 十             | $\top$                   | +-                |                | _            | _                       |                |                         |           |                |  |  |  |
|                                                                                                                         |                                                                                                         |                                  | Н.                                           | 1-       | +-           |             | -               | ╄                         | -                                                              | -             | +             | ┿       | Н              | _                   | $\vdash$ | Н             | $\dashv$    | _                                 | +                          | Н              | -             | -                        | +                 | ш              | _            | _                       | <b>—</b>       |                         |           |                |  |  |  |
| 8                                                                                                                       |                                                                                                         |                                  |                                              |          |              |             | 1               | 1                         | <b>!</b>                                                       | - 1           | 4             | 1       | ш              | -                   | 1 1      | П             |             | - [                               |                            | 1 1            |               |                          |                   |                |              | -1                      | ı              |                         |           | - 1            |  |  |  |
| the c                                                                                                                   |                                                                                                         |                                  |                                              |          | 1            |             |                 | †                         | 1                                                              | 7             |               | _       | 1              | 1.                  |          |               | $\neg$      | $\top$                            | +                          | П              | $\neg$        | $\top$                   | +                 |                | $\dashv$     | ┪                       |                |                         |           |                |  |  |  |
| 9                                                                                                                       |                                                                                                         |                                  | $\vdash \vdash$                              | +-       | +            | -           | <b>↓</b>        | ╄-                        | -                                                              |               | 4             | $\perp$ | Ш              |                     | F 91     | 4             | 4           | 4                                 | 4_                         | Ш              | $\rightarrow$ | 1                        | +                 |                | 4            | _                       | $\vdash$       |                         |           |                |  |  |  |
| 10                                                                                                                      |                                                                                                         |                                  |                                              | 1        | 1            |             | 1               |                           | l i                                                            |               | 1 4           |         | 11             | - [1                | . 1      |               |             | -1                                |                            | П              |               | l                        | 1.                |                | - 1          | - 1                     |                |                         |           |                |  |  |  |
|                                                                                                                         |                                                                                                         |                                  |                                              |          |              |             | 1               | $\top$                    |                                                                |               |               | $\top$  | $\Box$         | _†_                 | 1        | Ÿ             |             | 7                                 | +                          | + 1            | _             | +                        | +                 | Н              | $\dashv$     | $\neg$                  |                |                         |           | -              |  |  |  |
| 11                                                                                                                      |                                                                                                         |                                  | $\vdash$                                     | -        | -            | 17          | ļ               | ╄                         | ₽                                                              | -             | -             | +       | $\vdash$       | 1                   | 1        | ı             | -           |                                   | _                          | Н              | $\rightarrow$ | +                        | ₩                 | Ш              | _            | 4                       | <u> </u>       |                         |           |                |  |  |  |
| 12                                                                                                                      |                                                                                                         |                                  | 11                                           | 1        |              |             |                 | 1                         | lΙ                                                             |               |               | 1       |                | -                   | 1        | П             |             |                                   | ř.                         | H              | - 1           |                          |                   | П              |              | 1                       | 1              |                         |           | - 1            |  |  |  |
| 別學家                                                                                                                     | ADDITIONAL COMMENTS                                                                                     |                                  | FLINOU                                       | PHILD BY | PAFFILIATI   | 704         | DAT             |                           | 100                                                            | ine           |               |         |                | CCEPT               | MO MO    | -             | 0.14.7      |                                   |                            | 200            | - 40          | UE .                     |                   | THATE          |              | ALS: D                  | SAMO           | LE CONDI                | TIONS     |                |  |  |  |
| 23.50                                                                                                                   |                                                                                                         |                                  |                                              | 2/       | 1            | - Programme | and the last    |                           | SECTION.                                                       |               | 患用器           | Sie S   |                |                     |          | -             |             | 200000000                         | S Date                     | ny an          | 10.00         | का एक एक                 | 86-BERGE          | PART IS        |              |                         | GALLEY.        | SECTION.                | Monnie    | Security of    |  |  |  |
| 1                                                                                                                       |                                                                                                         | $-1/\lambda$                     | 770                                          | 263V     | ق(دا.        | Der         | 18/2            | Alh                       | 17                                                             | ÇQ.           | <i>_</i>      | بر      | rz             | R,                  | 80       | TΡ            | aci         | . F                               | -                          | rl;            | 1 اء۔         | ζ <i>(</i> )             | lii               | 7              | r:d          | $\delta$                |                |                         |           | - 1            |  |  |  |
|                                                                                                                         |                                                                                                         | 1 CTG                            | R.                                           | xx       | Pacel        | 1 -         | 8/31/           |                           | 7                                                              |               | 7             | 7       | e L            | F                   |          |               |             | -                                 |                            | ブリ             |               | -                        | 1                 |                | Ť            |                         | $\overline{}$  | $\neg$                  | $\neg$    |                |  |  |  |
| <del></del>                                                                                                             |                                                                                                         | 10°                              | - 1                                          | -        | Gret.        | د طب        |                 |                           | 6.                                                             | 3 6           |               |         | 1              | Š.                  |          | _             |             |                                   |                            | -              |               |                          | +                 | _              | +            | 1                       | 1              | +                       | -         | <del>-,</del>  |  |  |  |
|                                                                                                                         | <u> </u>                                                                                                | - (                              | ~e દ                                         | 12       |              |             | 9-1-1           | 5                         | 8                                                              | 30            |               |         | dt             | $\nu c$             |          |               |             |                                   |                            |                | 9-1-          | 15                       | 10                | 30             |              | <u>1.5</u>              | 1              |                         | ٧         | ``_            |  |  |  |
|                                                                                                                         | •                                                                                                       |                                  |                                              |          |              |             |                 |                           |                                                                |               |               |         |                | _                   | -        |               |             |                                   |                            |                |               |                          |                   |                | ŀ            | 241                     | 1/2            | بر                      |           | 5/             |  |  |  |
| Page 1                                                                                                                  |                                                                                                         | •                                |                                              |          | PRI          | NT Name     | AND SIG         | LER                       | toesteu                                                        |               |               |         |                |                     |          | K             |             |                                   |                            |                |               |                          | 13400             |                |              | EMPinc                  | Received on    |                         |           |                |  |  |  |
| 103                                                                                                                     | •                                                                                                       |                                  |                                              |          | SIG          | NATURE      | of SAMP         | LER                       | :                                                              |               |               |         |                |                     |          |               | D           | ATE S                             | Signe                      | d:             | -             |                          |                   |                | - 1          | Σ.                      | Secon<br>Secon | Y/N)<br>Yastod<br>taled | 88        | sample<br>Y/N) |  |  |  |